
 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

Context and Re-Usability of Core 

Components 

v1.04 

Core Components Team 

10 May 2001 

 

(This document is the non-normative version formatted for printing, July 2001) 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 2 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

 

 

 

 

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on 
or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole 
or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included 
on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by 
removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it 
into languages other than English. 

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns. 

This document and the information contained herein is provided on an "AS IS" basis and ebXML DISCLAIMS 
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY 
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 3 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

Table of Contents 

1 Status of this Document........................................................................................................ 5 

2 ebXML Participants ............................................................................................................. 6 

3 Introduction........................................................................................................................... 8 

3.1 Summary of contents of document .................................................................................. 8 

3.2 Context defined ............................................................................................................... 8 

3.3 Context in a business perspective ................................................................................... 9 

4 Using Context Descriptors.................................................................................................. 11 

4.1 Context-controlled core component metamodel ........................................................... 11 
4.1.1 Core component type definitions .........................................................................................................11 
4.1.2 Basic information entity.......................................................................................................................11 
4.1.3 Aggregate information entity...............................................................................................................12 
4.1.4 Functional set.......................................................................................................................................12 

4.2 Context constraints ....................................................................................................... 12 

4.3 Seeding core components.............................................................................................. 13 

4.4 Using core components................................................................................................. 13 

4.5 Building business documents ........................................................................................ 14 

4.6 Beyond re-use................................................................................................................ 14 

4.7 Non-compliance issue ................................................................................................... 14 

5 The Application of Context to Business Problems........................................................... 16 

5.1 Promoting interoperability ........................................................................................... 16 
5.1.1 Using context to handle name and structural location variation when determining semantic 
equivalence.........................................................................................................................................................16 
5.1.2 Reusing data across related processes..................................................................................................18 
5.1.3 International and cultural variation in data ..........................................................................................18 

5.2 Implementation strategies for core component context ................................................ 19 
5.2.1 Common core component context implementation considerations .....................................................19 
5.2.2 Browser-hosted implementation strategy.............................................................................................19 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 4 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

5.2.3 ERP and EDI integration .....................................................................................................................20 

6 Disclaimer ............................................................................................................................ 22 

7 Contact Information ........................................................................................................... 23 

 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 5 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

1 Status of this Document 

This document specifies an ebXML Technical Report for the eBusiness community.  

Distribution of this document is unlimited. 

The document formatting is based on the Internet Society’s Standard RFC format. 

This version: 

www.ebxml.org/specs/ebCNTXT.pdf 

Latest version: 

www.ebxml.org/specs/ebCNTXT.pdf 

http://www.ebxml.org/specs/ebCNTXT.pdf
http://www.ebxml.org/specs/ebCNTXT.pdf


Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 6 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

2 ebXML Participants 

We would like to recognize the following for their significant participation to the development of 
this document. 

Editing team: 

Mike Adcock  APACS 

Sue Probert  Commerce One 

James Whittle  e CentreUK 

Gait Boxman  TIE 

Thomas Becker  SAP 

Team Leader: 

Arofan Gregory  Commerce One 

Vice Team Leader: 

Eduardo Gutentag  SUN Microsystems 

Contributors: 

Tom Warner 

Jim Dick 

Rob Jeavons 

David Connelly 

Arofan Gregory 

Martin Bryan 

Mike Adcock 

Eduardo Gutentag 

Matthew Gertner 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 7 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

Polly Jan 

Sharon Kadlec 

Sally Wang 

James Wertner 

Todd Freter 

Henrik Reiche 

Chris Nelson 

Martin Roberts 

Samantha Rolefes 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 8 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

3 Introduction 

3.1 Summary of contents of document 

This document describes how business contexts’ influence on data structures can be rendered in 
an explicit, machine-processable form. This is done by establishing a set of classification 
hierarchies that are used to identify the situations in which a core component will require 
modification. The classifications that are being recommended are to be found in ebXML TR - 
Catalogue of Context Drivers Ver 1.04. The methodology for the use of these context drivers is 
detailed in ebXML TR – Document Assembly and Context Rules Ver 1.04. 

The present document MUST be read in conjunction with these documents. The purpose of this 
document is to give readers sufficient familiarity with the idea of explicit utilization of context 
drivers to enable them to understand the classifications and methodology as described in those 
documents. 

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD 
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be 
interpreted as described in RFC 2119. 

3.2 Context defined 

When a business process is taking place, the context in which it is taking place can be specified 
by a set of contextual categories and their associated values. For example, if an glue 
manufacturer is selling   to a shoe manufacturer, the context values might be as follows: 

Contextual Category Value 

Process Procurement 

Product Classification Glue 

Region (buyer) France 

Region (seller) U.S. 

Industry (buyer)  Garment 

Industry (seller) Adhesives 

The following set of scenarios explain when context may be applied to a specific Core 
Component: 

• Design Time - to create the minimum useful schema. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 9 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

• Integration Time - Identify and help resolve data requirements conflicts required for business 
transactions. 

• Run Time - to express the business relationships between data. 

• Used by Trading Partners to validate the runtime document instances. 

• Navigation of the registry to find other data sets. 

• Need to hold the data about the context in the rules. 

• Discovery Process for creating Core Components or extensions. 

• Core Components are discovered along with the business context in which they are used. 

For a catalogue of Contexts, see ebXML TR - Catalogue of Context Drivers Ver 1.04. 

3.3 Context in a business perspective 

The concept of context is not new. It can be found already in existing messages like EDIFACT 
or X12. Context is one of the aspects of modelling business processes, as illustrated in the 
following example, which shows the top-down modelling of a business process into more and 
more specific processes: 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 10 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

Generic
Edifact/X12 Message

Business transaction
XML or EDI 

Business Process break down 

The specific use described in a MIG,
defining element and codes usedBusiness Process

Industry

Region

 

Although UML modelling of business processes is discussed as if it is a completely new 
approach, it is not. Earlier development of EDI messages was done by identifying business 
processes. Typically the underlying process was defined in some generic way, describing the 
specific data elements and codes to be used, while leaving it to implementations to define the 
specific use of the message. The Message Implementation Guides describe a subset of a generic 
message, where specific elements qualified by codes express specific data (semantics). The 
overall term for this expression of specific data is what we define as context. 

The diagram above also provides an example of where context is used. Breaking down a 
business process implies the application of some of the major context drivers. 

Context for a business process is one-dimensional, and includes two roles in an industry in a 
region with respect to an official constraint, for instance. These context drivers are not applied in 
some sequence: they form the context for the business process. 

Besides business process context-drivers there may be other activity context-drivers, which again 
are not applied in some sequence, but form the context for the business activity. 

The technical application of the Core Components context drivers requires a methodology for 
using context to define transactions. The business perspective of context is well known and used 
by implication today. The rest of this technical report, and the ones related to it (ebXML TR - 
Document Assembly and Context Rules Ver 1.04 and ebXML TR - Catalogue of Context 
Drivers Ver 1.04) enable an explicit expression and use of context. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 11 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

4 Using Context Descriptors 

4.1 Context-controlled core component metamodel 

The formal model for the Context-controlled Core Component Metamodel can be seen in the 
document ebXML TR - Catalogue of Context Drivers Ver 1.04. 

4.1.1 Core component type definitions 

A Core Component Type Definition defines a reusable type of core component for which no pre-
determined use name has been assigned. No business semantics are associated with the Core 
Component Type Definition – these semantics appear when it is used in a Basic Information 
Entity. 

Each definition is given a globally unique Identifier, which should be suitable for use as a 
registry or registry key. 

A human-readable name for the type (ending in the word Type, e.g. AmountType), and a brief 
description of the purpose of the type, are also required. For further specification see the 
document ebXML TR - CC Dictionary Entry Naming Conventions Ver 1.04. 

By default a Core Component Type Definition is deemed to be restrictable or extendable. If this 
is not the case the isRestrictable or isExtendable boolean properties must be set to False. This is 
also true of Basic and Aggregate Information Entities. 

4.1.2 Basic information entity 

Where the types of data that are permitted for a Basic Information Entity are defined by an 
external agency the name of the maintaining agency and the agency assigned identifier (id) must 
be recorded. 

A formal definition of the relevant Datatype must be associated with each Basic Information 
Entity. This could be done in accordance with Part 2 of the W3C’s XML Schema specification, 
or using Document Type Definitions as specified in the W3C XML 1.0 specification. 

If a data type is associated with an externally defined list of permitted values, then the URI of a 
resource that defines the set of currently approved permitted values should be recorded as an 
external value list object. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 12 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

If the list of permitted values is defined as part of the core component definition a Permitted 
Value List must be created. The list consists of one or more Permitted Values identified by a 
name that is unique within the list, each of which should be assigned one or more Permitted 
Value Meanings, each of which consists of a statement of the meaning assigned to the value and 
the IETF RFC1766 language code identifying the language in which the meaning has been 
defined. 

4.1.3 Aggregate information entity 

For each component forming part of an Aggregate Information Entity an Aggregation Rules that 
identifies a Type Use Rules object must be created. The Type Use Rules record the Name 
assigned to the referenced type within the location and, optionally, an explanation of the use to 
which the embedded component is being put within this component. 

Where there are constraints on the number of times an embedded component can be used these 
are recorded as the MinMaxConstraints property. 

Where there are constraints on the order in which sub-components within the aggregate are to be 
used an Embedded Group must be defined to identify whether the constraint applies to the use of 
a choice or sequence of objects. 

4.1.4 Functional set 

A Functional Set is a set of  two or more Functional Sets, or two or more Basic Information 
Entities or Aggregates that can be used to model information related to a single function in 
different ways.1 

4.2 Context constraints 

A Document Model is created by applying a set of Context Rules to a set of Basic and/or 
Aggregate Information Entities that have been “assembled” to meet a defined business process. 

The Assemble Types modelling element identifies the base Basic and/or Aggregate Information 
Entities, applies an appropriate sequence to the components and renames embedded components 
as required within the business process. 

The Context Constraints define modifications to be made to existing Basic and/or Aggregate 
Information Entities when used within specific contexts, and any Application Component needed 
to extend a core component or the document model. 

                                                 
1 For example, a location could be recorded as a postal address, a United Nations location code or as a set of co-ordinates as 
generated by a Global Positioning System. Which of this set of equivalent functions would be chosen for a particular message is 
context dependent. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 13 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

Individual constraints are associated with a particular value within a named taxonomy stored as a 
named context classification within an ebXML repository. 

Where the constraint requires that the base definition of a core component be redefined the 
constraints are defined as a Type Constraint. Where the constraint applies to a facet of a 
Datatype definition it forms a Datatype Constraint that is associated with a specific Datatype. 

4.3 Seeding core components 

Lower level core components, either basic or aggregate information entities, can be re-used 
within higher level aggregates. Fundamentally, they are used "in the context of" the higher level 
aggregate. This is a purely structural context, not a business context, creating stereotype (i.e. 
fundamental or generic) information entities. 

Recognizing that there are situations in which equivalent information can be expressed in several 
ways, relevant core components can be grouped together into Functional Sets. These provide a 
means by which a limited choice of stereotype information entities can be offered as alternative 
ways of specifying information for a particular function, e.g. a location can be specified as an 
address, a GPS reference, or a UN Locode. While the functional set is still a stereotype, the 
choice is dependent on a business context or contexts. 

4.4  Using core components 

Use of a core component without any modification in a particular business context creates a 
Substitute Information Entity. This is registered under a unique business name formed from the 
context and the stereotype component names. 

Note This is essential to record the industry sector(s) that use the substitute information entity, 
the context(s) in which they are used, and all the substitute information entities that use 
the Core Component. 

Use of a core component with extensions (or indeed restrictions) in a particular business context 
creates a Process Specific Entity. This is registered under a unique business name formed from 
the context and the stereotype component names. 

Note This is essential to record the industry sector(s) that use the substitute information entity, 
the context(s) in which they are used, and all the process specific entities that use the 
Core Component. 

Substitute information entities and process specific entities are collectively Context Constrained 
Information Entities. Registration of all these, however numerous, is essential to achieve 
maximum re-use, to avoid "re-inventing the wheel", and to gain interoperability. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 14 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

4.5 Building business documents 

Business documents are built by drawing on the repository "library" of components. The context 
descriptors that are registered for each component are used to select the appropriate context 
constrained information entities for the business document that is being built. These values 
would be the same as values found in a business process model that informs the contextual use of 
the core components. 

If no appropriate context constrained information entity exists, a new one must be created, 
according to the principles described in the previous section, and ideally using an existing 
stereotype. Registration of the new process specific information entity adds to the range of 
available context-constrained information entities.. 

4.6 Beyond re-use 

If no appropriate existing stereotype exists, an industry vertical or similar community may need 
to: 

• Create additional Basic components for pieces of information, which cannot be represented 
using already-defined Core Components. These are Domain Basic Components. 

• Use Core Component(s) to construct a non-core Aggregate Component, called a Domain 
Complex Component. 

• Use Core Component(s) and Domain Components to construct a non-core Complex 
Component, also known as a Domain Complex Component. 

• Use Domain Component(s) to construct a non-core Complex Component. These are also 
Domain Complex Components. 

Ideally, Domain Components need to be recorded in the same detail as Core Components, 
complete with relevant Context(s). This is an aspect of extensibility; Domain Components 
should be registered so as to avoid 're-inventing the wheel'. Newcomers can re-use Domain 
Components and register any additional Context(s) with which they will henceforth be associated 

At some point, non-core Domain Components can become Core Components, according to 
criteria that judge the degree of re-use. These values would be the same as values found in a 
business process model that informs the contextual use of the core components. 

4.7 Non-compliance issue 

This section raises two basic issues: 

1. Extensibility 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 15 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

2. Registration 

Registering Domain Components cannot be completely policed. Groups or companies might 
decide to use Core Components, extend them and invent their own Domain Components and 
never register them. 

As a consequence, the use of these Domain Components will not become part of the ebXML 
standards community. Exact equivalents may well be re-invented in a different way, with 
different naming, and formally registered as a Domain Components. 

Unregistered Domain Components: 

• Will hinder communication and interoperability between different communities. 

• Should not, in any circumstances, be favoured over formally registered equivalents. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 16 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

5 The Application of Context to Business Problems 

This section offers a discussion of how context can be deployed to solve real-world problems of 
interoperability and document design. It makes no claims to being comprehensive. 

5.1 Promoting interoperability 

A few of the common scenarios faced by trading partners today are: 

• Same Data, Different Names: Frequently, trading partners are asked to support multiple sets 
of business vocabularies, where the same data is referred to with two or more different 
names. Typically, the equivalence is established using mapping and translation tools and 
code conversions, requiring extensive work to integrate systems. 

• Same Data, Different Structural Position: This is a related problem - the same piece of 
data may be located in different places structurally in equivalent messages. 

• Same Data, Different Process: Because of differences in business process, the same data 
may be expressed differently. Often, this is seen when the same basic message structure is 
used in two related processes, but the cardinality of some data members is different based on 
where the message is being used. 

• Same Data, Different Culture: This is a case most often seen in international trade, where 
different cultures format and structure data differently from other cultures. 

For each of these scenarios, we will look at how the application of context can promote 
interoperability. In each case, it is assumed that the trading partners describe the data needs for 
each business process they support in the form of Assembly and Context rules. These can then be 
made available in a repository, or be given directly to prospective trading partners. Specific 
implementation options are discussed in more detail below. Please note that all examples given 
are meant to be illustrative, and may not be based very firmly in reality. 

5.1.1 Using context to handle name and structural location variation when 
determining semantic equivalence 

This section addresses the first two scenarios listed above. One place where this type of lack of 
interoperability is seen is in supply chain scenarios, where small suppliers are selling into more 
than one industry vertical. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 17 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

Industry "verticals" are generally defined by the large buyers at the top of the supply chain. 
Large buyers have highly automated back-office systems; smaller suppliers do not. Because 
"industries" view things from their own perspective, they tend to organize data differently, and 
they often use taxonomies that are specific to their industry. Conversely, smaller suppliers often 
produce goods and services for many different industries: a glue manufacturer could sell a 
product used in making planes, cars, and shoes, for example, which are seen as three completely 
separate industry verticals. 

Since each industry vertical has different names for the same things, and arranges data 
differently, it is difficult or impossible for SMEs to fully automate their business. The time for 
data to travel up and down the supply chain is therefore very long, inventories must be kept high, 
and many potential efficiencies are lost all throughout the supply chain. 

For example, when our small glue manufacturer receives orders from two of these industries, 
they will have different "standard" vocabularies. Let's say that in the automotive vocabulary, the 
requested date for shipping each item in an order is called ShippingDate, and that this 
information is always included with each item in the order. For the clothing manufacturer, the 
same information is a ShipDate and it is located only once in the header. 

Today, this kind of problem would be handled by translation. A transformation tool would map 
between these obviously corresponding pieces of data. By analyzing the various vocabularies 
that must be supported, the glue manufacturer would be able to create a map for each industry 
standard or trading partner vocabulary supported. The problem here is basically one of cost: an 
expensive analysis must be conducted to determine the equivalencies in each vocabulary, even 
when they are fairly obvious. 

The automation of this mapping process is enabled by Semantic Identification Documents, which 
describe a document's derivation from Assembly and Context Rules, and Assembly and Context 
rules, which describe the derivation of each industry's vocabulary from a set of core components. 
In each case, the semantics of the data can be identified by tracing them back to the core 
component from which they were derived. 

Because the core component that exists as the basis of any vocabulary can be traced back 
through this chain, the base semantic of any field or message structure can be determined. By 
mapping each piece of data in each document structure back to its core, and then comparing the 
two, equivalence can be automatically determined, and a mapping derived for use by a 
transformation engine. Note that this process may also require a knowledge of the parent-child 
relationships between components, as these provide semantic qualification of the core. (For 
example, a Tax element inside a line item has potentially different semantic relevance than the 
same component used at the header level.) 

Ultimately, the cost of developing the mapping for translation technology is reduced, because the 
extensive manual analysis formerly required is no longer needed. While this does not entirely 
remove the cost of integrating a new trading partner, it does provide a significant reduction in 
cost. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 18 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

5.1.2 Reusing data across related processes 

Very often, a single item of data is used in multiple transactions within a single business process, 
or is used in two related business processes. In many cases, a single message structure can be 
used to support these different processes or related transactions. An example of this includes an 
Order, which may be used to request a purchase order (OrderRequest), to place an order 
(Order), and to do change ordering (ChangeOrder). These three transactions require a nearly 
identical set of data, but are different. Typically, these differences stem from some action or 
status related to a specific point in the business process, or involve the ability of one trading 
partner to include data that may not yet be available at the time a message is created. 

In a description of this document structure, fields must be provided for all of the data required at 
every stage of the process. At the same time, anything that cannot be included at every point 
across the business process must be made optional. (This is less of an issue with EDI syntax, 
since all that needs to be changed is the implementation guide that discusses the use of the 
document. In XML, either an entirely new document type must be described, or a field must be 
made "optional" that might be better "required" at some other point in the process.) 

In order to achieve tight validation, a separate document description for each transaction must be 
available. If what is wanted is the simplicity offered by having a single document type, then 
validation must be sacrificed (particularly for XML systems). This is a problem that can be 
solved through the application of context. 

By specifying the needed data and optionality within a single document type through context 
rules, and tying these to a specific transaction or point within the business process, the advantage 
of smaller, more specific documents, and a single base document type can be achieved. The 
process described above for tracing a data element back through the Context Rules and 
Assembly Rules to a specific core component is used again here, although this is typically a 
design-time activity that does not need to be performed by an application. 

5.1.3 International and cultural variation in data 

It is very often the case that a single set of business data is structured differently in different parts 
of the world. Often, this is a reflection of cultural differences in the real world. Perhaps the best-
known example of this is the structuring of addresses, which reveal a huge amount of variation. 
It is certainly possible to store all potentially useful address-related information in a back-office 
system, but, depending on where the trading partners are and what their data demands are, they 
will probably only be capable of processing a small number of the possible structural variations. 

Context provides a clear way of dealing with this situation: every trading partner can fully 
describe their structural needs in Context Rules, and the semantic equivalency of different fields 
can be established using the mechanism described above. This allows us to determine the correct 
structures for each trading partner, based on where they do business. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 19 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

5.2 Implementation strategies for core component context 

Different use cases will require different implementation strategies for taking advantage of core 
component context. In the case of smaller companies with minimal back-office software in place, 
a browser-hosted solution using web forms for data entry may be the best choice for integrating 
with trading partners. Larger companies will need more sophisticated solutions that bind into 
ERP systems on the back-end, and provide connectivity with EDI gateways for integration with 
trading partners who have not implemented ebXML. In both cases, it must be possible to 
perform integration both at design-time and at run-time. Design-time integration is likely to be 
the standard case, especially in the short term, but run-time integration will yield the most value 
over the long-term, since it will enable on-the-fly discovery of new trading partners and 
negotiation of mutually acceptably data forms, without the need for expensive and time-
consuming manual integration work. 

5.2.1 Common core component context implementation considerations 

In all integration scenarios, the same underlying process is engaged in order to implement core 
component context. A context engine is fed the appropriate assembly and context rules for both 
trading partners, identifying the core components that make up the business documents for a 
given business process and any modifications that must be made to these core components in 
order to meet specific trading partner requirements. 

The assembly rules are applied first, resulting in a schema or DTD modeling the relevant 
information. (For the sake of simplicity, we will use the term “schema” in subsequent discussion 
to refer to any one of the various dialects of XML schemas and to DTDs.) Context rules are then 
applied to adapt the schema to the contexts in which the trading partners are active. The output is 
thus a customized schema that contains all of the necessary information for the interaction, using 
standard core components wherever possible to maximize interoperability. 

In order to achieve run-time integration, additional information, known as schema annotations, 
must be made available at the core component level to specify bindings to ERP systems, EDI 
gateways and web forms. These annotations reference standard core components, once again for 
interoperability purposes. The annotations, on the other hand, are trading-partner-specific and, in 
essence, tell the run-time integration engine how to marry these standard core components with 
the implementation details of the systems used by each company. 

5.2.2 Browser-hosted implementation strategy 

Small companies that do not have back-office software in place conduct business primarily using 
phone and fax. For them, manual data processing is an integral part of trading partner integration. 
Significant value can be gained from use of core components by replacing these existing systems 
with browser-hosted applications that go straight from a web form to an ebXML-conformant 
XML document that can be transmitted directly to a trading partner. Conversely, incoming data 
in the form of XML messages can be displayed in the browser. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 20 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

If a company wishes to perform design-time integration with a specific trading partner, a schema 
is first generated that takes into account the requirements of the two parties (using the context 
engine described above). Two primary interfaces must then be implemented based on the data 
model described by this schema. The first interface enables the company to view incoming XML 
documents. This can be achieved by simply applying an XSLT stylesheet to the document to 
generate an HTML document that can be shown in a browser. The second interface is more 
complex, and must enable the company to enter data that will be used to create a schema-
conformant XML document that will be communicated to the trading partner. This form can be 
developed using any standard web development technology. 

The main advantage of design-time integration is that it does not require any special technology 
other than what is commonly available today. On the other hand, the manual development of the 
kinds of sophisticated web forms needed for real-world implementations of complex schemas is 
quite challenging and time-consuming. The use of tools that automate this process by generating 
forms directly from schemas can be highly advantageous, to the extent that these tools are 
available. 

In the case of run-time integration, even consultation of incoming documents is more complex 
than in the design-time scenario. Since the schema is not known ahead of time, so it is not 
possible to author an XSLT stylesheet to do an XML to HTML mapping. One solution would be 
to display the documents as raw XML using XML display capabilities such as those included in 
Internet Explorer 5.0. This is not entirely satisfying, however, as the raw XML view is neither 
particularly attractive nor intuitive. Otherwise, schema annotations of the type described above 
can be used to automate the formatting of the document, without the need for a hard-coded 
stylesheet. 

Creation and modification of outgoing documents at run-time clearly requires the use of some 
sort of tool capable of generating web forms dynamically from schemas. To a large extent, all of 
the information necessary for this task is contained in the schema itself: structural information, 
data types, optionality, etc. Additional information such as field labels, length and ordering can 
be specified using schema annotations. If XML conformant with the input schema is generated 
when the form is submitted, the result is a full-fledged system for manual interaction in the web 
browser with ebXML-compliant systems. 

5.2.3 ERP and EDI integration 

For design-time integration with ERP systems and EDI gateways, the schema generated from the 
assembly and context rules document is used as the basis for the mapping. One option is to write 
custom integration code that reads the data from the appropriate system (e.g. BAPI calls to 
retrieve data from an SAP R/3 database) and generates an XML document that conforms to the 
schema. This is a fairly straightforward process that can leverage a large body of XML 
processing software. 

Another option is to use one of the increasing number of XML-savvy integration tools. Tools 
exist already for reading data from a wide range of ERP systems and generating XML 
documents, and vendors are now announcing support for XML schemas that will partially 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 21 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

automate these mappings by reading the schema describing the desired XML document format. 
The same applies to EDI support; EDI-to-XML gateways exist and are beginning to provide 
XML schema support that will render the integration task more straightforward. 

When run-time integration is a requirement, the same issue arises as with browser-based 
integration. The schema is not known ahead of time, so it is not possible to write custom code in 
order to generate XML documents of the appropriate format. The aforementioned schema-aware 
integration tools for ERP and EDI represent one possible solution to this problem, to the extent 
that they are capable of fully automating the binding of schemas. As the schema support 
provided by these systems matures, it is likely that schema annotations of the type described 
above with also be used to determine which data in the EDI documents or ERP databases 
corresponds to which data in the generated XML documents. 

Clearly integration must work in both directions; i.e. it must be possible to read data from an 
ERP system, and to write data from an incoming XML document back to the ERP system. In the 
case of EDI systems it will be necessary to convert from EDI to XML and vice versa. While 
these cases are not always entirely equivalent (e.g. writing back to an ERP system requires 
concurrency control that is irrelevant when reading from the system), the differences are 
implementation details that do not change the overall integration strategy. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 22 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

6 Disclaimer 

The views and specification expressed in this document are those of the authors and are not 
necessarily those of their employers. The authors and their employers specifically disclaim 
responsibility for any problems arising from correct or incorrect implementation or use of this 
design. 



Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 23 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

7 Contact Information 

Team Leader 

Name   Arofan Gregory 

Company   Commerce One 

Street   Vallco Parkway 

City, state, zip/other Cupertino, CA 

Nation   US 

Phone:  

Email:   arofan.gregory@commerceone.com 

Vice Team Lead 

Name   Mike Adcock 

Company   APACS 

Street   Mercury House, Triton Court, 14 Finsbury Square 

City, state, zip/other London EC2A 1LQ 

Nation   UK 

Phone:   +44-20-7711-6318 

Email:   mike.adcock@apacs.org.uk 

Editor 

Name   James Whittle 

Company   e centreUK 

Street   10, Maltravers Street 

City, state, zip/other London WC2R 3BX 

mailto:mike.adcock@apacs.org.uk


Core Components Team  May 2001 

Context and Re-Usability of Core Components  Page 24 of 24 

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 

Nation   UK 

Phone:   +44-20-7655-9022 

Email:   james.whittle@e-centre.org.uk 


	Status of this Document
	ebXML Participants
	Introduction
	Summary of contents of document
	Context defined
	Context in a business perspective

	Using Context Descriptors
	Context-controlled core component metamodel
	Core component type definitions
	Basic information entity
	Aggregate information entity
	Functional set

	Context constraints
	Seeding core components
	Using core components
	Building business documents
	Beyond re-use
	Non-compliance issue

	The Application of Context to Business Problems
	Promoting interoperability
	Using context to handle name and structural location variation when determining semantic equivalence
	Reusing data across related processes
	International and cultural variation in data

	Implementation strategies for core component context
	Common core component context implementation considerations
	Browser-hosted implementation strategy
	ERP and EDI integration


	Disclaimer
	Contact Information

