
electronic business XML (ebXML)
Technical Architecture

Specification

Draft v 0.6.5

This version:
http://www.ebxml.org/working/project_teams/technical_arch/

Latest version:
http://www.ebxml.org/…

Previous version:
http://wwwebxml.org/…..

Team Leader:
Anders Grangard (EDIFrance) anders.grangard@edifrance.org

Editor:
Duane Nickull (XML Global) duane@xmlglobal.com

Abstract
The ebXML Technical Architecture Specification represents the work of the ebXML
Technical Architecture Project Team. It defines the ebXML infrastructure and is based on the
ebXML Requirements Specification document created by the ebXML Requirements Project
Team

Status of this document

This document is in Draft status, It has not been approved by the Technical Architecture
Project Team.

Comments on this Draft Specification are requested by May 26, 2000.

This document has been produced as part of the ebXML Technical Architecture effort. The
goal of the Technical Architecture Team are discussed on the team’s web page –
http://www.ebxml.org/project_teams/architecture.htm

A list of current ebXML Technical Specifications and other technical documents can be found
at http://www.ebxml.org/specindex.htm.

Public discussion on ebXML architecture takes place on the mailing list ebXML-
architecture@oasis-open.org.

Please report errors in this document to the editor duane@xmlglobal.com or ebxml-
architecture@oasis-open.org

TABLE of CONTENTS

1.1 General ebXML Principles
1.2 General Deliverables of ebXML
1.3 Scope Definition
1.4 Special Considerations
1.5 Goals of ebXML Technical Architecture
1.6 Conventions for Identifying ebXML Specifications Versions
1.7 Forwards Compatibility

2. ebXML System Architecture
2.1 Definitions
2.2 Registries and Repositories

2.2.1 Registry Definition
2.2.2 Repository Definition
2.2.3 Interactions
2.2.4 Registry and Repository Security
2.2.5 Registry/Repository Acceptance Policy
2.2.6 Repository Objects
2.2.7 Defining Processes
2.2.8 Defining Objects

2.3 Modelling Data Elements from Business Objects
2.3.1 Addressing Registries and Repositories

2.4 Using the Data Elements in DTDs
2.5 Retrieving Objects and Processes
2.6 ebXML Business Process Search Requirements

3. Transportation, Routing and Packaging
3.1 Section Definitions
3.2 Transportation Protocol Requirements Architecture
3.3 Routing of ebXML Messages
3.4 ebXML Message Components
3.5 Technical Data
3.6 Metadata

4. Participation Requirements
5. Conformance Issues and Testing

1. Introduction

The ebXML (electronic business Extensible Markup Language) is a United Nations
CEFACT/OASIS sponsored initiative. The ebXML has a mandate to create a single global
electronic market. The ebXML mission is to provide an open XML-based infrastructure
enabling the global use of electronic business information in an interoperable, secure and
consistent manner by all parties. XML is the Extensible Markup Language, a meta-language
used to define vocabularies for marking up and providing structure to electronic data.

Figure 1.0 (below) Represents an abstraction of business and technological
components that are within the scope of the ebXML Technical Architecture. The
inter-relations between components define the mandate for interoperability.

Business
Process
Models

Message
Business Content
Technical Content

Services
Interface

Metadata
model to

XML
Transfor

Common
Technical

Architecture Security

Transport

Sends &
Receives

Uses

Enables

Defines

Supports

Business
Object
 Library

Defines

Feeds

Provides
Access
To

Distributed
Repository

RegistryR R

TR
TR

B

C

BP+R

ebXML
Meta
Model

TR

TA+BP

BP+TA

Uses

Populate

Business
Process

Legend for Figure 1.0:

The red characters represent the ebXML project team primarily responsible for each
area.

Projects Teams:

TA = Technical Architecture
BP = Business Process Methodology
TRP = Transport, Routing & Packaging
R2 = Registry and Repository
C2 = Core Components

The method for modelling objects and processes and the subsequent deriving of XML syntax
in a consistent manner must be achieved by the component labelled “Metadata model to
XMLTransformation”. The method will be defined by the Business Process Methodology
Project Team.

1.1 General ebXML Principles

The finished ebXML specification shall adhere to the original mandate and provide technical
specifications that:

a. Enable simple, easy and ubiquitous use of XML for electronic business.

b. Provide a global, industry neutral open/interoperable infrastructure to facilitate
business-to-business electronic interactions.

c. Meet the real needs of businesses in terms of legal, functional and equitable
architecture.

d. Specify an easy on ramp and quick learning curve for companies in developing
nations. Provide companies in developing nations an easy on ramp and quick learning
curve.

e. Coalesce the structure and content components of divergent XML vocabularies.

f. Support timely interaction between trading partners using divergent electronic
standards.

g. Avoid imposing unreasonable financial, technical and software requirements on those
wishing to participate within the ebXML infrastructure, particularly smaller companies.

h. Facilitate multi-lingual (multi-byte character set) support.

i. Shall not preclude an easy transition path from existing EDI standards. This is to
acknowledge the needs of trading partners who have substantial investments in existing
systems.

j. Facilitate a scalable transition path which allows trading partners to gradually adopt
loosely-coupled components from the ebXML infrastructure.

1.2 General Deliverables of ebXML

a. When ebXML is completed, the first specification shall be expressed as version 1.0.

b. This document is based on a set of requirements outlined in the ebXML Requirements
Specification. That document is available at http://www.ebxml.org.

c. The ebXML 1.0 specification shall be expressed as a series of design rules and
technical recommendations. It may not necessarily be in the form of one document.
There are five major specification documents which shall collectively form the final
specification:

i) Technical Architecture Specification - contains an overview of the
technical infrastructure that comprises ebXML and itemizes the design
rules and guidelines.

ii) Repository and Registry Specification - includes functional
specification and technical design, interfaces, services.

iii) Transport, Routing and Packaging Specification - addresses transport
of ebXML messages, the means of security employed and the physical
construction of the messaging used within the scope of the ebXML system.

iv) Business Process Modelling Specification - the business process
meta-model and the recommended methodology for using it.

v) Core Components Specification - The set of ebXML core components, or
the prescribed methodology for deriving them.

Appendices

vi) Global ebXML definition dictionary - A glossary of terms used within the
ebXML infrastructure.

1.3 Scope Definition

a) All messages that are presenting themselves as ebXML messages, and claim to be
compliant with the ebXML specification shall be in full compliance with the set of ebXML
specifications.

b) A message that is conformant to the ebXML specifications but does not claim to be an
ebXML compliant message is not considered within scope.

c) "Claiming to be ebXML compliant” needs further definition in the full set of ebXML
specifications but is generally understood to be the by-product of using a set of ebXML
specific elements and metadata (DTD’s and possibly schemas in the future).

1.4 Special Considerations

a. The needs of SMEs (Small and Medium Enterprises) and participants using multi-byte
character sets shall be addressed.

b. The ebXML should make use of the 20+ years experience gained from EDI
particularly the ability to define real world business processes in electronic semantics.

c. The ebXML shall be an extensible architecture to meet future needs, not a rigid, set
“standard” which limits the functionality of trading partners.

d. The ebXML shall make it easy and affordable to participate in the new global
paradigm of e-business.

1.5 Goals of ebXML Technical Architecture

Definitions:

For this section only:

“Business Process” is a wide term used to describe any transaction between two trading
partners.

a. Providing an architecture for integration of business processes among ad-hoc or
established independent business partners by electronic means.

b. Reducing the need for collaborative business partners to have individual and expensive

prior agreement on how to integrate business processes.

c. Providing a high-level business-centric view of distributed e-business processes.

d. Supporting and representing business processes independent of the technical solution.

e. Specifying and supporting a library of common, standard inter-business processes.

f. Allowing business processes and enabling technologies to evolve independently.

g. Integrating with new and legacy systems throughout the enterprise.

h. Leveraging existing technologies and standards

1.6 Conventions for Identifying ebXML Specifications Versions

a. Each ebXML technical specification shall contain a version identifier to uniquely
identify it.

b. Standard conventions of major.minor as defined by ISO [Ed. Note - INSERT
STANDARD HERE] shall be applied (e.g., version=“1.17”).

c. The first complete version of each technical specification shall be version 1.0.

1.7 Forwards Compatibility

a. Each subsequent new version of any ebXML specification shall be able to
accommodate ebXML interactions which are performed consequently to a previous
specification version.

b. New specification version interactions need to be recognized by previous specification
versions architectural components. This means that an older architectural component
shall be able to ascertain that the other component is of a newer version, but is not
required to determine anything else.

c. The ebXML shall inherit the forwards and backwards compatibility built into the
W3C’s XML 1.0 specification.

2. ebXML System Architecture

This document contains a high level abstraction of the ebXML Technical Architecture.
Section 2 specifically deals with the functional requirements for registries and repositories. The
Registry and Repository Specification, available at http://www.ebxml.org/, contains much
more detailed information and design rules for registries and repositories.

2.1 Definitions

The following definitions apply to Section 2 only:

Repository Object - an object, whether it be a business process or an actual data element,
that is stored in a repository. Repository objects can be atomic or compound structures of
atomic data elements.

Steward/Owner - a generic descriptor of a custodian who owns a repository object. A
steward can be different from the submitting organization.

Administrator - (same as Repository Authority as defined by the OASIS Registry
Repository group) the entity (person, organization, company) that operates a registry or
repository. This designation is necessary to assign security responsibilities.

Data element - (not to be confused with an XML data element) the same as a repository
object (see above). A data element is presumed to be atomic in structure unless specifically
named as a “Compound Data Element.”

Business Process - is a wide term used to describe any transaction between two trading
partners.

2.2 Registries and Repositories

a. At the heart of the ebXML infrastructure is a powerful system of distributed registries
and repositories.

b. The synchronization aspect refers to the symbiotic publish and subscribe relationship
between the registry and the repository.

2.2.1 Registry Definition

a. A registry is a mechanism whereby relevant repository objects and metadata about
them can be registered such that a pointer to their location, and all their metadata, can
be retrieved as the result of a query.

b. A registry shall also be able to track and recognize stewards of repository objects and
the repository objects themselves (see “2.6 Registry and Repository Security”).

c. A registry shall incorporate a mechanism for querying a repository or a cache of a
repository’s index via an API (see “2.15 ebXML Business Process Search
Requirements”).

2.2.2 Repository Definition

a. A location or a set of distributed locations where repository objects pointed at by the
registry reside and from which they can be retrieved by conventional means (e.g., http
or ftp), perhaps with additional authentication/permission layers.

b. Repositories shall be distributed. The ebXML registry and repository architecture shall
support distribution.

c. Examples of Repository Authorities can be top level organizations, verticals or SMEs.

d. Registries and repositories shall both be capable of handling multi-byte character sets
in the form of Unicode UTF-8 or UTF-16 encoded XML data.

2.2.3 Interactions

a. A registry shall have an interface to allow stewards to submit or update their
repository objects.

b. A registry shall provide an interface for applications (i.e., API) to query its associated
repository for repository objects.

Figure 2.1 - Interactions within a Registry and Repository System

Repository

Registry

SECURITY

POINTS

PUBLISHE

API

Business
Applicatio
n

Human
Interface

c. This API (Application Programming Interface) may also provide further functionality
like allowing RPCs (Remote Procedure Calls) to modify repository objects (with
appropriate permissions). An example could be an XML syntax message delivered to
the API via the business application interface repository which results in a query being
performed against the repository.

d. A registry shall provide an interface for humans (possibly CGI based) to manually
query for repository objects.

e. A repository and registry shall synchronize their contents with one another in a
symbiotic “publish/subscribe” relationship.

f. Rules ‘d’ and ‘e’ (above) shall specifically be able to scale across multiple
repositories.

Figure 2.2 - How a Query mechanism shall scale (query) across multiple Repositories

API

Repository
Repository

Repository
Repository

Repository

Human Search
Interface

RepositoryRegistry

Query
daemon

Query

CACHE

[NOTES -
The incoming XML tells the XML search engine server to perform a “query” or “insert” into
the repository/registry. A return string of XML is generated and delivered back to the client
via HTTP.}

2.2.4 Registry and Repository Security

a. Appropriate security protocols shall be deployed to offer authentication, protection
and non-repudiation functionality to a repository and registry. In instances where a
repository or registry is deployed in a web accessible environment, a suitable security
protocol shall be employed to ensure that system corruption or breaches are avoided.
Specifically, the O/S shall be safeguarded against all reasonably foreseeable threats.

b. At the time an object is first created in a repository, or updated, the authentication
shall be able to identify the Submitting Organization and ascertain whether or not that
entity has the authority to perform the requested actions.

c. The registry and repository shall track the necessary information provided by the
transport layer to archive information for purposes of non-repudiation.

d. The Repository Authority (RA) shall make known what security procedures are being
followed.

e. The administrator of the registry or repository is responsible for ensuring the security
protocol is fully operational and shall take all reasonable steps to ensure a fully secure
service.

f. The Registry and Repository Specification shall clearly state the minimum requirements
for any party interested in becoming a RA.

2.2.5 Registry/Repository Acceptance Policy

a. A submission to a registry/repository involves three stages of data element
classification. The repository objects can be classified as:

Development view:
• Submissions - newly submitted items that need to be examined
• Work in progress - a stage whereby the RA examines and suggests further refining

of the repository objects.

Run time view:
• Standardized Objects - Repository objects which are now expressed in XML

syntax and available to parties other than the RA and the SA (submitting authority
- also called the steward). All ebXML documents shall have a DTD associated
with them or, at a later stage, a schema.

b. A system shall exist for a process of acceptance of artefacts within each new
submission to a repository.

c. Repository objects which are classified as standardized objects shall be tested to
ensure that it is in XML syntax.

2.2.6 Repository Objects

[NOTE - Add definitions and picture]

a. The structure of the common business object library shall work with the business
process model. These common business objects are transformed into repository
objects using transformation rules, thus (indirectly) defining the business content of
messages.

b. A component library also facilitates the development of software components.

c. All repository objects have a steward associated with them. The steward is the
custodian (owner) of the repository object--whether it be a data element or a business
process.

2.2.7 Defining Processes

a. Authors shall utilize UML models, such as use case, class diagram and activity
modelling, for business processes. A mechanism for deriving XML syntax from UML
models in a consistent manner is a requirement.

b. The defining of business methods is the starting point. Once a business method or
process in a repository is completed (i.e., standardized object, it needs to be
expressed in XML syntax.

c. The process of identifying business processes shall be presented to SMEs (small to
medium sized enterprises) in a user friendly and intuitive manner. The concerns of
SME integration shall be addressed in the way in which they are assimilated into the
ebXML infrastructure.

2.2.8 Defining Objects

a. Objects can generally be defined in two smaller sub-categories:

• Business Process: those which represent business transaction (submitting an
invoice, sending a purchase order, etc.)

• Data Elements - Data elements are atomic elements such as those of a database
that are data standard compliant. An example of a data element could be a first
name or a postal code.

Data Element Structures (Patterns. Also called Compound Data Elements (?) -
Data structures composed of several smaller atomic data elements or even other
compound Data elements.

b. Submitting Organizations shall have the ability to suggest the decomposition of a data
element into two or more atomic data elements.

c. At the stage a new submission is received, it shall be examined by the Repository
Authority who shall have a mandate to avoid duplication of atomic data elements.

d. The Core Components Project Team shall draft guidelines for aiding submitting
organizations to define what constitutes an atomic data element.

[NOTE - Item c. represents a potentially costly and risky process]

e. Data elements are atomic in their structure by definition. Data element definitions shall
be such that no unilateral interpretations could result in a data element being sub-
defined into smaller data elements.

f. Compound data elements are data elements that are comprised of two or more atomic
or other compound data elements.

2.3 Modelling Data Elements from Business Objects

a. The registry and repository model for storing data elements predicates a necessity for
extracting those data elements from UML models.

b. This over-simplified model shows a basic transaction template.

PROCESSParty 1 Party 2

Figure 2.2 an example of a simple transaction may have two

c. Each data element when presented as a repository object in a business process shall
be identified and classified until it is atomic.

d. An object shall contain at least one byte of information (8 bits).

Figure 2.2.1 In the above example, Party 1 has attributes which can be extracted and
labelled as data elements (repository objects)

e. Party 1 has a NAME, ADDRESS and PHONE NUMBER
NAME = Foobarski Programming, Inc.
ADDRESS = 123 Main Street, Vancouver, BC Canada, V3J-3E1
PHONE NUMBER = (604) 717-1100

f. The first data element cannot be broken down into smaller, simpler objects however,
the second and third can

g. The second and third are referred to as a “compound data elements,” data elements
that are comprised of two or more data elements (repository objects).

h. The ADDRESS data element can be broken down as follows:

STREET ADDRESS = 123 main Street
CITY = Vancouver
PROVINCE = BC
ZIP = V3J-3E1

The PHONE can be broken down into

PREFIX = (604)
PHONE = 717-1100

Further decomposition of the telephone number is possible but was not explored in
this example.

i. To further provide a syntax neutral approach to identify data elements, once a data
element has been identified, it can receive a unique identification.

Party 1

Name = “Foobarski
Programming”

Address = “123 main St.
Vancouver

Phone = “(604) 717-1100”

j. Imagine in the following example, we take the data elements:

Identifier Description Value
PARTYNAME NAME Foobarski Programming, Inc.
MEE002 STREET ADDRESS 123Main Street
VILLE CITY Vancouver
THDX3 Province BC
ZIP ZIP V3J-3E1
AREACODE PREFIX (604)
FONE PHONE 717-1100

k. Each data element in a repository shall have a unique code. Additional fields in the
repository shall contain human readable information about the data element (repository
object).

IDENTIFIER DESCRIPTION EXAMPLE DATA
PARTYNAME COMPANY NAME FooBar, Inc. CDATA

l. The guidelines for syntax and semantic composition of the Unique Key for each Data
Element shall be the responsibility of the Registry and Repository Project Team. Each
Unique Identifier shall have the following functionality:

1. It must be used for one and only one repository data element
2. It is to be used by the Query mechanism to locate the

repository data element.

m. A similar description file will be used to build compound data elements:

IDENTIFIER DESCRIPTION EXAMPLE DATA
MY-ADDRESS
S_IDENTIFIER

 A complete address
made of compound data
elements

123 Main St.
Vancouver, BC
Canada, V3J3E1

MEE002,
VILLE,
THDX3, etc.

2.3.1 Addressing Registries and Repositories

a. A repository shall be addressable as a URL in order to allow HTTP as the default
transportation protocol.

Figure 2.2.2 - Example of a Repository URL

http://www.foorepository.org/

b. Each data element shall be uniquely addressable via the Internet by using a
combination of XPointer/Xlink and a URL.

Figure 2.2.3 - Example of a Specific path to a Data Element

http://www.foorepository.org/cgiToGetElements.pm?DataElement=THE_UNIQUE CODE

c. Assuming that the cgi_to_get_elements.pm file is an executable script which takes the
two URL encoded arguments:

Data_element=THE_UNIQUE_CODE

and returns a value, we now can address the unique object from anywhere on the
Internet.

2.4 Using the Data Elements in DTDs

a. Data element repository references may be placed into a DTD as a combination of
Xpointer and a URL. The reference is there to provide either a machine or human with
semantic information about what the character data in the corresponding XML files
represents

XML FILE:

DTD FILE:

<?xml version=”1.0”?>
<doctype SYSTEM CompanyName.dtd>
<Companyname>
 <name>Anders’ Swedish Pleasure Palace</name>
</Companyname>

<?xml version=”1.0”?>
<!DOCTYPE CompanyName [
<!ELEMENT CompanyName(name)>
<!ELEMENT name (#CDATA)>
<!ATTLIST name type CDATA #FIXED
‘http://www.foorepository.com/CgiToGetElement.cgi?
DataElement=ME00001’

b. The preceding example allows the element to be associated with a unique data element
in a repository.

c. The method for EbXML XML document instance references to specific data elements
within a repository must be able to be accomplished by using either DTD’s or
Schemas (when schemas become eligible for inclusion within the EbXML
Architecture). The exact syntax for using a schema to accomplish the functionality of
the DTD file example (above) must adhere to the same functionality.

d. For the purposes of forwards compatibility with Schemas as described in (c) above,
the term “DTD” shall be interchangeable with Schema for the remainder of this
section.

e. A party who receives such an XML file, with a repository lookup definition in the
accompanying DTD, can perform the repository lookup on the data element to find
out what it is.

f. A Submitting Organization may use the process defined by the RA to have a
namespace-unique data element placed into a repository.

[Known issue - Are the unique data elements to be defined through a Namespace?]

2.5 Retrieving Objects and Processes

a. Query and retrieval mechanisms shall be employed to access objects in a
repository/registry.

b. An ebXML search mechanism should provide a web search interface for humans to
manually locate data (particularly important for SMEs) and an API for applications to
rapidly access stored data.

c. A caching mechanism is recommended to increase the efficiency of a query
mechanism.

2.6 ebXML Business Process Search Requirements

a. In instances where owners of XML documents wish to make the contents of those
documents available to the public and potential business partners, a search mechanism
shall be employed to provide a searchable index for discovery purposes. This section
refers explicitly to XML documents that are not part of a repository.

b. The XML syntax data will be addressable at a set, standard relative location to a
company’s URL (domain). A likely syntax for addressing those documents will be:

 http://www.theCompanyDomain.com/ebXML/*

[Known issue - We will examine the robots exclusion standard to determine if we may use
the robots.txt file to consistently reference this information. Duane]

c. The XML documents referenced at that location can contain information about:

i) The nature and specific identification credentials for that business.

ii) The appropriate URI and access protocols for the company.

iii) The nature of the business processes that the company allows web interactions
for.

iv) Other information that a participating company may deem relevant to broadcast
to potential business partners.

3. Transportation, Routing and Packaging

This section defines the architecture for the ebXML technical architecture. Section 3
specifically deals with the function requirements for transport, routing and packaging
components of the ebXML infrastructure. The Transport, Routing and Packaging
Specifications are available at http://www.ebxml.org/.

3.1 Section Definitions

 The following definitions apply to Section 3 only:

[Known issues - We’ll synchronize these defs with the ebXML common glossary when
available.}

Message – any data that is being transported within the ebXML infrastructure.

Message Scope Definition – any message that claims to be an ebXML compliant message
is considered to be within the scope of the ebXML infrastructure and subject to the technical
restrictions thereof.

Participating Device – a generic description of any endpoint for an ebXML message or any
device which claims to be able to handle the functionality of the ebXML message handling
constraints.

Transaction – a single or sequence of messages that are sent and received by participating
devices.

3.2 Transportation Protocol Requirements Architecture

a. A default, fallback transportation protocol shall be supported by all participating
devices. That fallback protocol will be HTTP (Hyper Text Transport Protocol).

b. The fallback transportation protocol may be superseded by another transportation

protocol in instances where:

i) All participating devices in a specific transaction support the higher transportation
protocol.

ii) It is determined that there is no possible future outcome to the transaction which
would result in another device being required to participate and that other device
may not be able to support the transportation protocol superset.

iii) A mechanism shall be developed whereby participating devices can, through a

process of discovery, find out which additional protocols they both support and
whether or not any further interactions are required by another participating
device which may need to support that supplemental protocol.

c. The transportation protocol shall be operating system independent.

d. The transportation protocol shall be independent of any security protocol.

e. Security protocols shall be present to meet the needs of the ebXML infrastructure.

Figure *.* - shows an overview of the transport, routing and packaging.

[NOTE - Update this picture]

Repository

Core
Component

Library

Business
Rules

2
Integration

System
Enterprise
Systems

Business
Documents

Messaging
System

Internet

Messaging
System

Transport,
Routing &
Packaging

Service
Interface

Message
Formats

Behavior

Core
Components

Registry &
Repository

Document
Choreography

Business
Process

Modeling

Messaging
Policy

Repository

Messaging
Policy

Repository

3.3 Routing of ebXML Messages

a. The ebXML messages shall include a header component which shall contain routing
and archiving information. The header shall be enclosed with an XML header
<element> and is not to be confused with an HTTP header.

b. The specific names for the elements in the header shall be specified by the Transport,
Routing and Packaging Group.

c. The routing information shall adequately and uniquely identify all of the parties that

participate in the particular message set exchange to a transaction.

d. The routing header information shall contain versioning to enable an audit trail of each
message.

3.4 ebXML Message Components

a. A message consists of an outer transport envelope , such as HTTP or SMTP, that
wraps and a transport independent message envelope , which consists of a header
with one or more header parts inside and a body that is the real payload of the
message.

b. The ebXML messages business transaction component shall be expressed in syntax

that conforms to XML (current version is 1.0).

c. The payload of the message business information shall be neutral but may need to use
entity references to comply with the XML syntax requirements pursuant to the XML
1.0 specification.

d. Each message shall contain three distinctive components: the technical data, the
business data and the metadata components.

3.5 Technical Data

a. The first part of the message shall be the processing instructions expressed in the
document type declaration: A mechanism shall be employed to allow the payload
section of the message to be handed off to the appropriate application without having
to incur the overhead of parsing the complete message.

b. A multi-byte character set declaration shall be used to help facilitate diverse language

characters (multi-lingual).

c. The declaration shall be in the form required by the current version of XML to specify
Unicode UTF-8 or UTF-16 encoding.

Eg. <?xml version=”1.0” encoding=”UTF-8”?>

d. The next component is the routing information (a technical component). Each message

shall have enough information in this section to uniquely identify each party and be able
to address each party on the Internet.

3.6 Metadata

a. The message shall use a root element tag of to identify it as an ebXML compliant
transaction message.

[EDITORS NOTE - THE TRP GROUP SHALL EITHER ADOPT THIS OR
SPECIFY AN ALTERNATIVE IDENTIFICATION ELEMENT OR
METHOD]

b. The next components of the metadata identify the business process, the version of that
process, the owner of the process and where another application can retrieve a
mapping template to apply to the business data component. Any further information
that may be required to facilitate the business requirements of that message.

c. The header component shall allow for extensibility to meet future requirements.

d. A method for guaranteeing non-repudiation of a message shall be built into the
Transport, Routing and Packaging Specification.

e. A method shall be determined to ensure that each message is delivered or, in the
alternative, an appropriate error message is generated. The method shall also allow
that each message is delivered once and once only (i.e., no duplicate deliveries of the
same message) between applications (communication end points).

f. Each message and each message set shall have the ability to be uniquely identified to
meet the business needs of providing archiving for an audit trail.

4. Participation Requirements

Figure 4.1 How Trading Partners Create metadata

NOTE - Change diagram : Human Interface (from above) Create HI box above API Please
add a box to show repository, arrow from reg to rep.

a. A trading partner creates a model of its business processes.

b. The model is registered with a registry or another mechanism which allows other
businesses to query it for the information. The owner is authenticated using a set
protocol.

c. The registry then submits the data to a repository. The repository may be public or
privately controlled. Trading partners can even utilize their own repositories.

d. The repository then makes the information available via the registry. The registry and
repository shall be synchronized.

e. The trading partner can now send a message to another ebXML capable trading
partner. The message sent to the second partner can be classified in two distinct
categories: meta information and business information.

Figure 4.1.4 - A Business Interchange

Trading
Partner

#1

Eb
Xml
App.

Trading
Partner

#2

Eb
Xml
App.

Business interchange

f. When trading partner #2 receives the incoming message, it gets handed to the ebXML
application by the ebXML compliant server that receives it. The ebXML application
then checks its own cache to see if the process object is available (versioning rules will
apply).

Figure 4.1.5 - A Trading Partner receives an incoming business message.

g. If the object is available, the transaction can be acted upon.

Trading
Partner #1

Eb
Xml
App.

Trading
Partner

#2

Eb
Xml
App.

Business interchange

Local
cache

h. If it is not found, the ebXML application shall then checks the registry and repository
for the item.

i. If the object is found, the transaction can now be acted upon.

j. A third stage manual search can be employed to locate the object.

Trading
Partner #1

Eb
Xml
App.

Trading
Partner

#2

Eb
Xml
App.

Business interchange

Repository
Registry

API

Business
application
interface

Human
Query
interface

GUI query
application

Manual
query

5. Conformance Issues and Testing

5.1 Conformance Definitions

a. Conformance is being able to measure that an implementation adhears to the
requirements that are inherent in the specification

b. Conformance can only be tested for items which are defined in the specification.

Conformance has three pieces: (1) the conformance statement or claim, (2) metrics to
determine if it conforms and (3) a testing program with procedures.

Conformance components

ebXML shall provide a conformance
Conformance for Certification of Repository Authorities.

[KNOWN ISSUE - The conformance section (to be added to this document) shall address
the need for versioning of specific components]

[KNOWN ISSUE - There is a larger issue of versioning which needs to be addressed]

