Repeats the obvious (restates the charters of each group, instead than asserting a mission for each of them)

· Too much focused on RegRep and, in addition, this focus tends to describe a solution instead than prescribing interfaces/usage-scenarios.

· Lacks a complete architecture where each of the parts (Registry, Repository, BP, TPP, TPA, CC etc) are clearly DEFINED and put in context

· Lacks HIGH-LEVEL Use Cases for the operability of ebXML compliant applications.

· Lacks the "User Point of View", i.e. lacks presenting the Architecture in a way that a User can find its own business case

· Lacks the "vendors Point of View", i.e. lacks presenting the Architecture in a way that a Vendor can find the possibility to define its own tool implementation

· Lacks a "Roadmap", i.e. lacks presenting a path from how a Company defines a basic interaction to how the same Company can participate/establish a broader interaction (supply chain, market place, etc)

· Lacks "scoping" the vertical efforts: what the BP should define and why? How the TPA interacts with the BP and the TRP ? etc.

· Lacks a "global vision" of "how this is used in real life" ! I mean, in real life things like accountability of a business process are fundamental, no one who seriously engage in something without this. And if this is not in someway "architect", it will be implemented by the tool vendors in inconsistent ways...

- Some sections are more requirement and implementation oriented v. architectural

 - 6.2 Use case list and descriptions

 - 6.4 Run Time Overview

 - "7.2 Functional Requirements"

 - "8.2 Business Process Documents Requirements"

 - "8.3 Business process Modeling Functional Requirements"

 - "9.2 Core Component Functional Requirements"

 - "9.3 Common Business Object Functional Requirements"

 - 10.1 "define the minimal functional requirements which a

 Registry/Repository"

 - 10.4 use cases

 - "10.5.3 RA Requirements"

 - "10.9 Registry and Repository Security Requirements"

 - "11.0 Messaging and Transport Requirements"

 - 11.1 "This section specifically deals with the function

 requirements"

 - APPENDIX "A" use cases

- Contains many implementation details

 - UC122 "ebXMLind.xml" file

 - 6.4(3) "utilize a special valid xml file named ebXMLind.xml"

 - 6.4(4) "parse the special file named ebXMLind.xml"

 - 6.4(6) "this SHALL be accomplished by utilizing a fixed

 attribute value for each XML"

 - 10. 10 "l.GUID SHALL be built using a combination of URN and

 a CDATA suffix that SHALL not exceed 8 bytes in length"

- Internal inconsistencies

 - 3.1 "seven major component specifications"

 - 5.0 "six major component specifications"

- Conformance testing is not part of Architecture

 - 5.0(1) "a set of conformance tests"

 - 6.1 "series of Conformant tests"

 - "12.0 ebXML Conformance and Testing"

- Diagrams hard to understand

 - Figure 1.0

- Don’t mention vendors

 - 6.3 "Biztalk"

- Document not complete

 - 6.3 "Note: SME scenarios to be discussed later."

 - 10.8.2 "SME's may not be using this model. SME integration

 will be discussed later."

 - 11.2 "The concrete realization of this abstract interface

 are yet TBD"

 - 11.2 "see section zzz for TPA"

 - 11.5(d) "d)defined in sections X.Y ? of this document"

It is also too long. Should be a shorter doc with a few simple

figures. We should be showing high level architecture. Could we

focus on just showing the components, how they fit together and what

they expose at their edges?

General:

* An Architecture should not design each module - just the interfaces between. This is a 'how to' document - too specific.

* There are a tremendous amount of valuable concepts and ideas in this document - however they may be in the wrong place (or document).

Specific:

lines 208-211 and lines 273-278 do not reflect the ebXML Reqmts Doc regarding TA scope.

lines 280-282 have TA confirmed the scope of the TPA team with them? I understood they were looking only at the IT level of a TP profile. (see also lines 676-685)

lines 286-287 I don’t think the MP methodology reaches the XML level. it defines the UML/meta model and relies on transformation tools to transform into XML syntax.

lines 324 I think detailed Run Time Views don’t belong in an Architecture document.

lines 370-411 - Expanded Run Time view diagram. this level of detail is too specific - should be abstracted.

lines 633-640 - this belongs in the Requirements doc. not in Architecture

lines 763-764 - why mention a 'maybe'?

lines 800-804 - the relationship between Core Component and CBO is still being debated , this is only an opinion at this stage.

Lines 837-838 - this is a requirement (not necessarily a valid one either)

line 840-841 - Core Components state they are working on syntax-neutral models. NOT XML. hence lines 851-856 do not apply.

lines 1212-1217 - I cannot follow this paragraph about the Message Service Layer. what is it trying to say? the whole area of Message Service Interface is unclear to me.

lines 1580 - 1612 - Use Case Scenarios. only shows independent scenarios , not the flow how they may connect together in a business cycle.

lines 1722-1849 - Appendix "B" describe an implementation - maybe too prescriptive for an architecture document

General

w/r/t the words SHALL, MUST, ... the usual convention is to CAPITALIZE

these words or phrases in the body of the document wherever they have

been used according to the definition expressed in RFC2119. There are

numerous places within the body of the document where this is not

the case.

Section 5.2 - this is still a set of requirements, not an architecture

description. If the intent is to provide the RegRep team with some

requirements, please do this separately and keep the Architecture

document an architecture and NOT a requirements document.

line 208 - you are providing examples of 'Repository Authority' before

defining the term. The term is also not identified as a term which is

expressed in the Glossary (which is bold if I correctly interpret

the convention). Also, shouldn't it be 'Registry Authority'?

line 332 - is the term 'data element' synonymous with 'repository object'?

if so, please use the term 'repository object' for consistency.

line 335 - the example does not match the text above. If the 'data element'

or 'repository object' is addressable via an URL with an XPointer then

the syntax of the query would be more like:

 http://foo.org/<somepath>/[code = '<somecode>']

or possibly:

 http://foo.org/<somepath>/getStuff.cgi?query=/somecontextpath/[code = '<somecode>']

The form of the example given is merely an HTTP query.

line 591 - it is not clear to me that the MS layer enforces the rules

expressed in the TPA. It certainly uses these rules, but in fact, the

TPA's BP rules would NOT be enforced within the Messaging Service layer.

line 593 - ... maps an ebXML message onto the ...

 ^^^^^^^

line 596-598 - I think that we are nearly in complete agreement within

TR&P that a set of normative transport protocol bindings/mappings will

be a deliverable of the TR&P Messaging Services specification. This

sentence is therefore incorrect.

line 641 - some of the 'parameters' necessary to send an ebXML message

are derived from the TPA which is identified in the Header.

line 643 - Receive doesn't indicate willingness as much as it is

a function which accepts incoming ebXML messages for processing.

line 662 - change 'behavior each party agrees to abide by.'

 to 'behavior by which parties agree to abide.'

line 762 - change 'agnostic' to 'neutral' or some other term

line 775 - to identify what?

line 785/786 - refer to Messaging Service specification.

line 791 - same comment as 785/786

line 819/821 - it would seem to me that if a participant were to

utilize its own repository, that the registry would simply have

a pointer to the repository object(s) and would not submit them

to the repository.

line 819/821 - it would seem that the whole set of steps related

to the context-based assembly of the messages to be exchanged

according to the business process needs to be described here

before we move on to the TPP stage.

line 829 - this step is premature IMHO. Before an exchange of

messages can take place, the following steps must be processed:

 - Party A retrieves Trading Partner Profile (TPP) of Party B

 from registry

 - Party A combines its own TPP with that of Party B resulting

 in a configuration which may be used to enable the exchange of

 messages (TPA)

 - Party A communicates the resultant TPA to Party B and if

 accepted, may begin exchange of ebXML messaging after each

 party has installed the resultant TPA

 - The TPA may be registered with the Registry (this is

 not mandatory, but probably a useful means of enabling

 a unique identification of the TPA between the two parties)

Note that there is a negotiation process involved here which should

be expressed as a business process (in terms of the BPM) and which

could be either a manual or automated process facilitated by ebXML

Messaging Service. If automated discovery/negotiation, then some manner

of bootstrapping must be provided which enables a previously unknown

party to send a message which can be accepted for processing. This

would likely take the form of an anonymous TPA (TPA Template) which

is installed in the Messaging Service of the target party (Party B)

which is registered in a Registry/Repository...

line 863-876 - this describes a nirvana case where an enterprise has a

fully ebXML-enabled application suite. I think that we need to

express the terms of the architecture such that it is demonstrated

to support "legacy" applications, etc. We will NEVER be successful

if we do not make this case EXPRESSLY and ABUNDANTLY clear to all

who read these specifications!!!!!

line 887 - change 'have to' to 'MUST' for clarity

Editorial

1. The document (version 0.8, 8/21) doesn't have the version information in

the document. Also, the line numbers are missing.

2. Could we include the "unified field theory" as delivered by Karsten R. in

the closing plenary and his overview diagram in section 5.1?

Technical

1. There is no description of how the runtime operation of the ebxml

architecture works (end-to-end). That is, what is the step-by-step scenario

that two trading partners go through to do business on the ebxml

infrastructure?

Specifically:

1. How do they exchange trading partner agreement information if they don't

have a TPA in the first place?

There is a discussion in the TRP and TP lists on this regarding negotiated

and dynamic discovery of TPAs and needs to be captured in the TA

architecture document.

2. How do they agree upon a business process from the registry/repository?

Does this information reside in the TPA and if so, is there a TPA for each

BP? It might be a good idea to clarify this aspect in the TA document and

add TP in the system overview (Page 6)

3. How do they monitor a business process, an instance of which is executing

at another trading partner's site?

 Should inquiring about a business process instance be specific to a BP

or does this apply across

 business processes?

"Functional Requirements"

Each part contains an overview and a section labeled "Functional Requirements". In each of those we have attempted to define what the components must facilitate without going too deep and stepping on the toes of the Project team responsible for that area. Can you please provide specific examples of where you se it not meeting your teams' definition

of "clearly defined" and "put in context"

Let's analyze things point by point:

 Section 7.2, Page 21

a) of course, it should be XML !

b), d) and e) : why these things are stated as

important? I think that if they are stated here, they should be important from an architecture point of view (in which case, WHY?). If not, they are irrelevant here and should be defined by the TPA group/document

c). If the TPA should mention the relevant Business Process GUIDs, which is the relation between the BP and the TPA? Why is it important to reference the Business Process in the TPA? Why a single TPA can reference many Business Processes ?

f) What is "sufficient" ? I mean, from an architectural point of view, Sufficient should highlight the minimum requirements that would be used to build a "compliant" implementation.

 Section 8.2, Page 23

 a) of course, it should be XML!

b) What is a "Role" ? Which are the characteristics for a Role? How an TP

 Actor maps to a Role?

 c) Which is the details of the BP choreography vs. the TP choreography? I mean, if

two partners need some "complex" interaction which, from a BP point of view, can be considered a single step, where do the BP ends and where the TP starts ?

c) Is reporting errors (I assume that this is valid as well for some other compensating action) standardized in some way or is it just like any step in a BP ?

 Section 8.3, Page 24

a) I do not understand this point. I do not care "from where" the BP definition

comes. I only care that the actual definition conforms to the "approved" DTD !

 Section 10.4, Page 28

 It is very detailed. I do not understand very well (at the architectural level)

the difference between Use Cases where the actor is a human or an automatic

piece of software. I think that the functionality should be available to the "automatic piece of software", the human interaction being a simple variant of this.

"ebXML compliant..."

We were told that we should not be defining what an ebXML compliant application should do. If this is wrong, can you please clarify this with the STC. I am happy to begin work on "Building an ebXML compliant application" however, we viewed this as something best done after all the specs have been approved due to dependencies on those specs.

Well, I think that the architecture should uncover as much information as possible about how a system will function. I am not saying "how the system is built" (this is design), nor "what the system should do" (this is analysis/requirements). In this context I see that the current document does not conform to this except for the use cases on the RegRep. What I am expecting is a document which allows me to understand HOW and ebXML implementation will work, what me (as a user) should do when going to reuse CoreComponents, reuse or create a BP, reuse or create a TPP etc. How can I build a

MarketPlace using the ebXML specs if I am an ISV? How a MarketPlace built using pieces that are ebXML compliant will work for me if I am a user?

The same is true for simple B2B exchanges or supply-chains...

I am expecting to see use cases which help me in understanding the dynamics of the interactions; so that I understand, from an architectural point of view, what a TPA is a which is the relationship between a TPA and a BP. I do not care too much about how rigorous the examples may be (i.e. they may be in pseudo-English instead than in XML if this "pollutes" too much and, actually, it may be probably better since the DTDs are in charge of the vertical groups), but I need to understand the "borders" and the "interactions".

Today we know that there is the BP and the TPA. But which area do they cover and which area do they overlap? is the TPA the "instantiation" of a role? Should I build a BP bottom up from different TPAs or should I derive the TPAs top-down from one or more BPs ?

Additionally, I would also like to see scenarios for :

 Process accountability / logging:

If I have more than 2 actors in my BP, how can any actor know about the state of a given process instance at a given moment? How can an actor trace the history of a process ?

I mean, accountability/logging is key for any commercial system and, I believe, if some rules are not given there is the risk that solutions from different vendors will not work together.

Process synchronization.

How can the end-point of a supply-chain be aware that what he is waiting for will never arrive (because 3 steps back in the business process the chain was broken and there was no recoverability...for instance) ?

 UDDI.

Example of the BP document"

We gave an example of a BP document and described its' functionality. Again, please give us specific feedback on what you foresee as a shortcoming.

Well, perhaps I was not a careful reader, but the only thing I saw is an XML instance of a BP document plus the functionalities described in Section 8 (which I have already mentioned before). Sorry, an XML document is UNREADABLE in the context of an Architectural document if it takes more than 10 lines and 4 tags. How can I understand the BP from an XML instance? I would use the instance just as a final "proof" that what is logically important is also physically included.

"RegRep is too detailed"

Don't the use cases describe the functionality needed from the interfaces. Our goal was not to do the interface work of all the components, just describe that must be facilitated by those specs. If our scope is going to be changed to address this, so be it. Please let us know your decision.

Of course the interfaces should be dealt with by the RegRep working group! But what I wanted to say was that the section on RegRep goes "deep inside" ** A SOLUTION ** and does not present use of RegRep "in the context of" an ebXML implementation and "in the context of" the ebXML specifications.

I would expect that the "discussion" on centralized/decentralized is inside the RegRep document, not at architectural level.

When dealing with the RegRep I am expecting to get (as a user) or to provide (as an ISV) some functionalities that are clear to everybody; I am not sure that the centralized/decentralized is such a thing, it looks more a "design" choice. On the

other end, the difference between the Repository and the Registry is well positioned in the Architecture document.

I do not care at all of ebXMLind.xml. This is an implementation detail (or, perhaps, a design decision). I care about the functionality represented by ebXMLind.xml (which, on the other end, is too much hidden behind the implementation choice).

In Section 10.9, bullet c, it seems that the TR&P interacts with the Repository. When ? If it is in some of the Use Cases, they should be mentioned to allow cross-referencing.

In bullet d of Section 10.9, where the information should be published? In the repository, in the registry or somewhere else?

Is this "whiteboard" described in the RegRep or is it part of the Architecture ?

In general, in Section 10.9, is ebXML "security protocol" agnostic? I mean, whichever is in place is OK provided it is made known to the participants ?

The Use Cases for the RegRep are too detailed and too repetitive for the Architectural document. In the context of the Architecture, which is the difference between submitting a TPA or a BP ? I am more interested in a Use Case one-level-higher which describes what a submitting organization will do, how a final user will get the info he is looking for

etc.

It looks like the most important part of ebXML is the Registry/Repository and that all other parts are "added on the top of that", "complement the Repository". I think that the dynamic behavior is also very important.

"Overall document too long"

This comment seems to be in contrast to your first two comments. Please

provide specific examples where you see this as too detailed too short.

What is too long is the list of use cases that are, at least, one level lower than expected at architectural level.

What is missing is some high-level uses cases that present how the ebXML spec will help implementing some of the most

common patterns used in electronic commerce, such as :

 market place

 B2B

 supply-chain

 integration across the enterprises

What is missing is some clear directions on :

 does ebXML care about accountability/logging?

 does ebXML care about tractability ?

 which is the relationship between the BP and the TPA?

 what is required to make my existing legacy application able to talk inside an ebXML conversation?

 how do I build a DTD for my application to talk to other applications inside an ebXML conversation?

"Repetition of WG charter"

The first section does this to provide context to readers of the document. We state that the audience includes "ebXML Project Teams". We wanted to provide a high level requirement for each of those before stating the "Functional Requirements" for each team.

Repeating the charter of each WG does not hurt, I agree that it is useful to "set the context". But, as I explained in the sections before, I think that there is not much more than that in many parts (BP and TPA, mainly but also, in some way,

CC).

"Picture of all the WGs"

The first diagram provides this but the level of detail was kept very abstract. We can work on this for the next revision.

Not only this. As I mentioned before, there is a lot of Use Cases. What is presented in the Architecture is a static view of

ebXML, we need dynamic views, we need Usability scenarios.

"High Level vs. Low Level use Cases"

We have included very detailed use case scenarios in appendix "A". They are very specific. We had more abstract use

cases in the previous version however, we received a lot of comments that they were not specific enough. You may be

out on your own in this opinion. This may be best left to the plenary to decide.

The Use Cases presented in Appendix A mainly deal with the Reg Rep and they are at least one level "too low". When dealing with the Architecture, I am interested in presenting/describing the use cases that allow somebody to use the RegRep to build its own implementation (either from a vendor or from a user point of view). I do not care to describe in detail how the "search" works. I should state that there should be a search which allows such and such and I would forward the reference to the RegRep WG. But I would need to understand how could I match a TPP with one or more BPs since this

use case is cross-WG and is at a level that allows the reader to understand how ebXML works.

I would be interested in understanding how to use the information in the RegRep to build the software that would allow my legacy to talk inside an ebXML conversation (NOT how this software should be built, but what should care about and where

these infos would be found and verified)....

"Building an ebXML compliant application..."

We haven’t defined user interfaces but can do if this is perceived as a shortcoming. We purposely decided to refrain from describing an "ebXML application". If you and others feel we should do this, we will do it but there are dependencies on the other specs for this.

Can I suggest that the architecture team, after finishing the TA spec, maybe can focus its' energy on a "Building an ebXML compliant Application" white paper? That may be a better route to go than trying to define a concrete User Interface when there is so much other work to be done (especially within BPM - modeling issues).

Here we are not talking about a GUI. We are talking about the "point of view" of the User or of the ISV. Which is about scenarios that would describe how a company would bet their business on software that conforms to the ebXML specs and which things an ISV must care when building software that will be "sold" as conformant to the ebXML specs.

I do not agree in working on a second paper AFTER the TA document is ready. This is TA !

"Roadmap"

"Defining a basic Interaction" is the work of BPM. We have defined what they must facilitate in their work but we are leaving the work to that group and feel they have made some great progress lately.

The BPM would deal with the methodology to model a BP which may include the examples on the supply-chain etc. But I do not think that it has to do with issues such as tractability/accountability/logging or how to map the roles with the TPP.

"Scoping"

Please clarify - I don't understand this comment. How the TPA interacts with the BP and the TRP ? etc. I can place some stuff from the PPT from San Jose into the TA spec but it will make it longer.

See my notes before. "Longer" is not about the number of pages, IMO, but about the content. I do not think that the thing could be solved "just by pasting some of the PTT from SJ..." (I would be happy to !). I think it is the overall setting of the TA document.

"Global vision"

This is more of an implementation issue. Please be more specific.

If I describe "how this is used in real life", it is not an implementation detail, sorry. Implementation is about saying HOW this

is done, not how this is going to be used. "Going to be used" maps to Use Cases.

"Accountability of the BP"

I totally agree but is it our teams' job to define this or BPM. Whatever is decided, we are open to it and will comply.

Whoever, but I strongly thing that this is beyond the BP methodology and should "drive" such methodology.

"Overlapping RegRep..."

I would like to get comments from the Reg Rep team to validate your opinion. If they feel we have overstepped our boundaries, then we will scale it back. IMHO - everything that is in the spec was absolutely necessary in respect to RegRep. We pared it down quite a bit from previous versions. Let's get it to the plenary for a wider cross section of

comments.

See my comments before on the "low level" / "high level" use cases.

