
[image: image1.wmf]Delivery

Channel

DC1

Transport

T1

Doc.Exch.

D1

Delivery

Channel

DC2

Transport

T2

Doc.Exch.

D2

Delivery

Channel

DC3

Transport

T3

Doc.Exch.

ID=D3

Collaboration-Protocol Profile and Agreement Specification

Version 0.91-QR

ebXML Trading-Partners Team
02/23/01 5:42 PM
1 Status of this Document

This Document specifies an ebXML WORK IN PROGRESS for the eBusiness community.

Distribution of this Document is unlimited.

The Document formatting is based on the Internet Society’s Standard RFC format.

This version:

http://www.ebxml.org/project_teams/trade_partner/private/cpa-cpp-spec-0.91-qr.doc

Latest version:

http://www.ebxml.org/project_teams/trade_partner/private/cpa-cpp-spec-0.91-qr.doc

Previous version:

http:// http://www.ebxml.org/project_teams/trade_partner/private/cpa-cpp-spec-0.9-qr.doc

2 ebXML participants

The authors wish to recognize the following for their significant participation to the development of this Document.

David Burdett, CommerceOne

Tim Chiou, United World Chinese Commercial Bank
Chris Ferris, Sun

Scott Hinkelman, IBM

Maryann Hondo, IBM

Sam Hunting, ECOM XML

John Ibbotson, IBM

Kenji Itoh, JASTPRO
Ravi Kacker, eXcelon Corp.

Thomas Limanek, iPlanet

Daniel Ling, VCHEQ

Henry Lowe, OMG

Dale Moberg, Sterling Commerce

Duane Nickull, XMLGlobal Technologies

Stefano Pogliani, Sun

Rebecca Reed, Mercator

Karsten Riemer, Sun

Marty Sachs, IBM

Yukinori Saito, ECOM

Tony Weida, Edifecs

3 Table of Contents

11
Status of this Document

2
ebXML participants
2
3
Table of Contents
3
4
Introduction
5
4.1 Summary of Contents of Document
5
4.2 Document Conventions
6
4.3 Definitions
6
4.4 Audience
6
4.5 Assumptions
6
4.6 Related Documents
6
5
Design Objectives
8
6
System Overview
9
6.1 What This Specification Does
9
6.2 Forming a CPA from Two CPPs
10
6.3 How the CPA Works
13
6.4 Where the CPA May Be Implemented
13
6.5 Definition and Scope
14
7
CPP Definition
15
7.1 CPP Structure
15
7.2 PartyInfo Element
16
7.2.1 PartyId element
17
7.2.2 PartyRef element
18
7.2.3 CollaborationRole element
19
7.2.4 ProcessSpecification Element
20
7.2.5 Role element
21
7.2.6 ServiceBinding element
22
7.2.7 Override element
22
7.2.8 Certificate element
23
7.2.9 DeliveryChannel element
24
7.2.10 Characteristics element
25
7.2.11 Transport element
26
7.2.12 Transport Protocol and Version
27
7.2.13 Endpoint Element
27
7.2.14 Transport Protocols
27
7.2.15 Transport Security
29
7.3 DocExchange element
30
7.3.1 docExchangeId attribute
30
7.3.2 ebXMLBinding element
30
7.3.3 version attribute
31
7.3.4 MessageEncoding element
31
7.3.5 ReliableMessaging element
31
7.3.6 NonRepudiation element
33
7.3.7 DigitalEnvelope element
33
7.3.8 Namespaces Supported
34
7.4 ds:Signature element
34
7.5 Comment element
34
8
CPA Definition
36
8.1 CPA Structure
36
8.2 CollaborationProtocolAgreement element
36
8.3 CPAType element
37
8.4 Status element
38
8.5 CPA Lifetime
38
8.5.1 Start element
38
8.5.2 End element
38
8.6 ConversationConstraints element
39
8.6.1 invocationLimit attribute
39
8.6.2 concurrentConversations attribute
39
8.7 PartyInfo element
40
8.7.1 ProcessSpecification element
40
8.8 ds:Signature element
40
8.8.1 Persistent Digital Signature
41
8.9 Comment element
42
8.10 Security Considerations for the CPA
42
8.11 Composing a CPA from Two CPPs
42
8.11.1 ID Attribute Duplication
42
8.12 Modifying Parameters of the Process Specification Document Based on Information in the CPA
43
9
References
44
10
Disclaimer
46
Contact Information
47
Copyright Statement
48
Appendix A Example of CPP Document (Non-normative)
49
Appendix B Example of CPA Document (Non-normative)
51
Appendix C DTD Corresponding to Complete CPP/CPA Definition (Normative)
55
Appendix D XML Schema Document Corresponding to Complete CPA Definition (Normative)
58
Appendix E Formats of Information in the CPP and CPA (Normative)
65
Appendix F Composing a CPA from Two CPPs (Non-Normative)
66
Appendix G Mapping of CPA Constructs to ebXML Message Header (Normative)
74

4 Introduction

NOTE to QR team: It was not possible to complete the following topics before the deadline for the first QR cycle. These topics will be added for the second cycle:

· Packaging and additional security definitions

· Party's send characteristics (CPP only)

· Checking that the Process Specification Document has not changed between CPP or CPA creation and CPA installation in the Parties' runtime systems.

4.1 Summary of Contents of Document
As defined in the ebXML Business-Process Model [BPMSPEC], a Business Partner is an entity that engages in Business Transactions with another Business Partner(s). Each Partner's capabilities (both commercial/business and technical) to engage in electronic Message exchanges with other Partners MAY be described by a Document called a Trading-Partner Profile (TPP). The agreed interactions between two Partners MAY be documented in a Document called a Trading-Partner Agreement (TPA). A TPA MAY be created by computing the intersection of the two Partners' TPPs.

The message-exchange capabilities of a Party MAY be described by a Collaboration-Protocol Profile (CPP) within the TPP. The message-exchange agreement between two Parties MAY be described by a Collaboration-Protocol Agreement (CPA) within the TPA. Included in the CPP and CPA are details of transport, Messaging, security constraints, and bindings to a Process-Specification Document that contains the definition of the interactions between the two Parties while engaging in a specified electronic business process.

This specification is a draft standard for trial implementation. This specification contains the detailed definitions of the Collaboration Protocol Profile (CPP) and the Collaboration Protocol Agreement (CPA).

This specification is a component of the suite of ebXML specifications. An overview of the ebXML specifications and their interrelations can be found in [TECHARCH].

This specification is organized as follows:

· Section 5 defines the objectives of this specification.

· Section 6 provides a system overview.

· Section 7 contains the definition of the CPP, identifying the structure and all necessary fields.

· Section 8 contains the definition of the CPA.

· The appendices include examples of XML CPP and CPA Documents, the DTD, an XML Schema Document equivalent to the DTD, formats of information in the CPP and CPA, Composing a CPA from two CPPs, and the mapping of CPA constructs to fields in the ebXML Header Document [MSSPEC].

4.2 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [EBXMLGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content of the XML CPP or CPA definitions.

In this specification, indented paragraphs beginning with "NOTE:" provide non-normative explanations or suggestions that are not required by the standard.

References to external Documents are represented with BLOCK text enclosed in brackets, e.g. [RFC2396]. The references are listed in Section 9, "References".

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this Document, are to be interpreted as described in [RFC 2119].

NOTE: Vendors should carefully consider support of "optional" elements, i.e. those with cardinalities (0 or 1) or (0 or more). Support of such an element means that the element is processed appropriately for its defined function and not just recognized and ignored. A given Party MAY use these elements in some CPPs or CPAs and not in others. Some of these elements define parameters or operating modes and should be implemented by all vendors. It may be appropriate to implement optional elements that represent major run-time functions, such as various alternative communication protocols or security functions, by means of plug-ins so that a given Party may acquire only the needed functions rather than having to install all of them.

4.3 Definitions

Technical terms in this specification are defined in the ebXML Glossary [EBXMLGLOSS].

4.4 Audience

One target audience for this specification is implementers of ebXML services and other designers and developers of middleware and application software that is to be used for conducting electronic business. Another target audience is the people in each enterprise who are responsible for creating CPPs and CPAs.

4.5 Assumptions

It is expected that the reader has an understanding of [XML] and is familiar with the concepts of electronic business (e-business).

4.6 Related Documents
Related Documents include ebXML Specifications on the following topics:

· ebXML Technical Architecture Specification [TECHARCH]

· ebXML Message Service Specification [MSSPEC]

· ebXML Business Process Specification Schema [BPMSPEC]

· ebXML Glossary [EBXMLGLOSS]

· ebXML Core Components Specification [EBXMLCC]

· ebXML Registry and Repository Specification [REGREP]

· ebXML Glossary [EBXMLGLOSS]

See Section 9 for the complete list of references.

5 Design Objectives

The objective of this specification is to ensure interoperability between two Parties even though they may procure application software and run-time support software from different vendors. The CPA defines the way two Parties will interact in performing the chosen collaborative process. Both Parties SHALL use identical copies of the CPA to configure their run-time systems. This assures that they are compatibly configured to exchange messages whether or not they have obtained their run-time systems from the same vendor. The configuration process MAY be automated by means of a suitable tool that reads the CPA and performs the configuration process.

It is an objective of this specification that a CPA SHALL be capable of being composed by intersecting the respective CPPs of the Parties involved. The resulting CPA SHALL contain only those elements that are in common, or compatible, between the two parties. Variable parameters, such as number of retries of errors, are then negotiated between the two Parties. The design of the CPP and CPA schemata facilitates this composition/negotiation process. However, the composition and negotatiation processes themselves are outside the scope of this specification.

6 System Overview

6.1 What This Specification Does

The exchange of information between two Parties requires each Party to know the other Party's supported Collaborative Processes, the other Party's role in the Collaborative Process, and the technology details about how the other Party sends and receives messages. In some cases, it is necessary for the two Parties to reach agreement on some of the details.

The way each Party can exchange information, in the context of a Collaborative Process, can be described by a Collaboration-Protocol Profile (CPP). The agreement between the Parties can be expressed as a Collaboration-Protocol Agreement (CPA)

To enable Parties wishing to do business to find other Parties that are suitable Business Partners, CPPs MAY be stored in a repository such as is provided by the ebXML Registry and Repository[REGREP]. Using a discovery process provided as part of the specifications of a repository, a Party MAY then use the facilities of the repository to find Business Partners.

The document that defines the interactions between two Parties is an [XML] document called a Process-Specification Document that conforms to the ebXML Business Process Specification Schema specification [BPMSPEC]. The CPP and CPA include references to this Process Specification Document. The Process-Specification Document may also be stored in a repository such as the ebXMP Registry and Repository.

[image: image2.wmf]Figure 2: Overview of Collaboration-Protocol Profiles(CPP)

What Business

Capabilities

It

“CAN DO”

When conducting

Business Process

with other parties

Party A

Party’s information

- Party name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

(Example of CPP)

Describe

Build

Figure 1 illustrates the relationships between a CPP and two Process-Specification Documents in an ebXML registry. On the left is a CPP that includes information about two parts of an enterprise that are represented as different Parties. On the right are shown two Process-Specification Documents. Each of the PartyInfo elements in the CPP contains an XML xlink reference to one of the Process-Specification Documents.

This specification defines the markup language vocabulary for creating electronic CPPs and CPAs. CPPs and CPAs are [XML] Documents. In the appendices of this specification are a sample CPP, a sample CPA, the DTD, and the corresponding XML Schema Document.

The CPP describes the capabilities of an individual Party. A CPA describes the capabilites that two Parties have agreed to use to perform a particular business process. Like the Trading-Partner Agreements used in Electronic Data Interchange (EDI), these CPAs define the "information technology terms and conditions" that enable Business Documents to be electronically interchanged between Partners. However, these CPAs are not paper Documents. Rather, they are electronic documents that can be processed by computers at the Partners' sites in order to set up and then execute the desired business information exchanges. The "legal" terms and conditions of a business agreement are outside the scope of this specification and therefore are not included in the CPP and CPA.

In general, the Parties to a CPA can have both client and server characteristics. A client requests services and a server provides services to the Party requesting services. In some applications, one Party only requests services and one Party only provides services. These applications have some resemblance to traditional client-server applications. In other applications, each Party may request services of the other.

6.2 Forming a CPA from Two CPPs

This section summarizes the process of discovering a Party to do business with and forming a CPA from the two Parties' CPPs. See Appendix F "Composing a CPA from Two CPPs (Non-Normative)" for more information.

Figure 2 illustrates forming a CPP. Party A tabulates the information to be placed in a repository for the discovery process, constructs a CPP that contains this information, and enters it into an ebXML Repository.

[image: image3.wmf]Figure 3, Overview of Collaboration-Protocol Agreements(CPA)

CPA ID

Party’s information

- Party A

- Party B

Transport Protocol

Transport Security P

DocExchange

Protocol

Link to Process-

Specification Doc.

Time out/Retry

-etc.

CPP

For

Party-A

CPP

For

Party-B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA has

arrived.

3

Agree-

ment

 on

CPA has

arrived.

4 Start Business activities with each other

[image: image4.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

Repository

Repository

Company B

(Buyer,Server)

Company A

(Seller,Server)

CPP(A)

CPP(B)

CPP(X)

CPP(Y)

CPP(Z)

CPP(A)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

1. Any company may register its

CPPs

to a Repository.

2. Company B discovers trading

partner A (Seller) by searching

CPPs

in the Repository and

downloads CPP(A) to Company-B’s

server.

3. Company B makes CPA(A,B) and

sends CPA(A,B) to Company A .

4. Companies A and B negotiate and

store identical copies of the

completed CPA as a document in

both servers. This process is done

manually or automatically.

5. Companies A and B configure

their runtime systems with the

information in the CPA.

6. Do Business (e.g. submit purchase

orders)

2.

6.

5.

5.

3.

4.

1.

1.

In figure 3, Party A and Party B use their CPPs to construct a CPA by calculating the intersection of the information in their CPPs. The resulting CPA defines how the two parties will behave in performing their collaborative process.
Figure 4 illustrates the entire process. The steps are listed at the left.

[image: image5.wmf]Figure 1: Structure of CPP & Business Process Specification in

Repository

Repository

Business

collaboration

protocol

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

collaboration

protocol

How the CPA Works

A CPA describes all the valid visible, and hence enforceable, interactions between the Parties and the way these interactions are carried out. It is independent of the internal processes executed at each Party. Each Party executes its own internal processes and interfaces them with the Collaborative Process described by the CPA. The CPA does not expose details of a Party's internal processes to the other Party. The intent of the CPA is to provide a high-level specification that can be easily comprehended by humans and yet is precise enough for enforcement by computers.

The CPA and the Process-Specification Document that it references define a Conversation between the two Parties. The Conversation represents a single unit of business as defined by the Binary-Collaboration component of the Process-Specification Document. The Conversation consists of one or more Business Transactions, each of which is a request Message from one Party and a response Message from the other Party. The Process-Specification Document defines, among other things, the request and response Messages for each Business Transaction and the order in which the Business Transactions are required to occur.

The CPA MAY actually reference more than one Process-Specification Document. When a CPA references more than one Process-Specification Document, each Process-Specification Document defines a distinct type of Conversation. Any one Conversation involves only a single Process-Specification Document.
A new Conversation is started each time a new unit of business is started. The business process also determines when the Conversation ends. From the viewpoint of a CPA between Party 1 and Party 2, the Conversation starts at Party 1 when Party 1 sends the first request Message to Party 2. At Party 2, the Conversation starts when it receives the first request of the unit of business from Party 1. A Conversation ends when the Parties have completed the unit of business.

NOTE: An implementation SHOULD provide means for the Process-Specification implementation to signal to the runtime software that a Conversation is ended.

NOTE: The runtime system MAY provide an interface by which the business application requests initiation and ending of Conversations.

6.3 Where the CPA May Be Implemented
Conceptually, the CPA and Process-Specification Document are implemented by a business to business (B2B) server at each Party's site. The B2B server provides the code for the services needed to support the CPA. This code includes the middleware that supports communication with the other Party, execution of the functions specified in the CPA, interfacing to each Party's back-end processes, and logging the interactions between the Parties for purposes such as audit and recovery. The middleware might support the concept of a long-running Conversation as the embodiment of a single unit of business between the Parties. To configure the two Parties' systems for business to business operations, the information in the copy of the CPA and Process-Specification Documents at each Party's site is installed in the runtime system. The static information MAY be recorded in a local database and other information in the CPA and Process-Specification Document MAY be used in generating or customizing the necessary code to support the CPA.

NOTE: It is possible to provide a graphic CPP/CPA-authoring tool that understands both the semantics of the CPP/CPA and the XML syntax. Equally important, the definitions in this specification make it feasible to automatically generate, at each Party's site, the code needed to execute the CPA, enforce its rules, and interface with the Party's back-end processes.

6.4 Definition and Scope

This specification defines and explains the contents of the CPP and CPA XML Documents. Its scope is limited to these definitions. It does not define how to compose a CPA from two CPPs nor does it define anything related to run-time support for the CPP and CPA. It does include some non-normative suggestions and recommendations regarding run-time support where these notes serve to clarify the CPP and CPA definitions.

7 CPP Definition

A CPP defines the capabilities of a Party to engage in electronic business with other Parties. These capabilities include both "technology" capabilities such as supported communication and Messaging protocols, and "business capabilities" in terms of what business processes it supports.

This section defines and discusses the details in the CPP in terms of the individual XML elements. The discussion is illustrated with some XML fragments and reference should be made to the DTD and sample CPP in the appendices.

The ProcessSpecification, DeliveryChannel, DocExchange, and Transport elements of the CPP describe the processing of a unit of business (Conversation). These elements form a layered structure somewhat analogous to a layered communication model. The remainder of this section describes both the above-mentioned elements and the corresponding run-time processing.

Process-Specification layer - The Process-Specification layer defines the heart of the business agreement between the Parties: the services (Business Transactions) which Parties to the CPA can request of each other and transition rules that determine the order of requests. This layer is defined by the separate Process-Specification Document that is referenced by the CPP and CPA.

Delivery Channels - A delivery channel describes a Party's Message-receiving characteristics. It consists of one Document-exchange definition and one transport definition. Several delivery channels can be defined in one CPP.

Document-Exchange layer - The Document-Exchange layer accepts a business document from the Process-Specification layer at one Party, encrypts it if specified, adds a digital signature for nonrepudiation if specified, and passes it to the transport layer for transmission to the other Party. It performs the inverse steps for received Messages. The options selected for the Document-Exchange layer are complementary to those selected for the Transport layer. For example, if Message security is desired and the selected transport protocol does not provide Message encryption then it must be specified at the Document-Exchange layer. The protocol for exchanging Messages between two Parties is defined by the ebXML Messaging Service Specification [MSSPEC] or other similar Messaging service.

Transport layer - The transport layer is responsible for Message delivery using the selected transport protocol. The selected protocol affects the choices selected for the Document-Exchange layer. For example, some transport-layer protocols may provide encryption and authentication while others have no such facility.

It should be understood that the functional layers encompassed by the CPP have no understanding of the contents of the payload of the business Documents.

7.1 CPP Structure

This section describes the overall structure of the CPP. Unless otherwise noted, CPP elements MUST be in the order shown here. Subsequent sections describe each of the elements in greater detail.

<CollaborationProtocolProfile

xmlns="http://www.ebxml.org/namespaces/tradePartner"

 xmlns:bpm="http://www.ebxml.org/namespaces/businessProcess"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xlink="http://www.w3.org/1999/xlink">

<PartyInfo> <!--one or more-->

 ...

</PartyInfo>

<ds:Signature> <!--zero or one-->

...

</ds:Signature>

<Comment>text</Comment> <!--zero or more-->

</CollaborationProtocolProfile>

7.1.1.1 CollaborationProtocolProfile element

The CollaborationProtocolProfile element is the root element of the CPP XML Document. The REQUIRED [XML] Namespace [XMLNS] declarations for the basic Document are as follows:

· The default namespace: xmlns="http://www.ebxml.org/namespaces/tradePartner"

· the Busines Process Model namespace: xmlns:bpm="http://www.ebxml.org/namespaces/businessProcess",

· XML Digital Signature namespace: xmlns:ds="http://www.w3.org/2000/09/xmldsig#",

· and the XLINK namespace: xmlns:xlink="http://www.w3.org/1999/xlink".

The CollaborationProtocolProfile element SHALL consist of the following child elements:

· One or more REQUIRED PartyInfo elements that identify the organization (or parts of the organization) whose capabilities are described by the CPP.

· Zero or one ds:Signature elements that contain the digital signature that signs the CPP Document.
· Zero or more Comment elements.
A CPP document MAY be digitally signed so as to provide for a means of ensuring that the Document has not been altered (integrity) and to provide for a means of authenticating the author of the Document. A digitally signed CPP SHALL be signed using technology that conforms to the joint W3C/IETF XML Digital Signature specification [XMLDSIG].

7.2 PartyInfo Element

The PartyInfo element identifies the organization whose capabilities are described in this CPP and includes all the details about this Party. More than one PartyInfo element may be provided in a CPP if the organization chooses to represent itself as subdivisions with different characteristics. Each of the subelements of PartyInfo is discussed later. The overall structure of the PartyInfo element is as follows:

<PartyInfo>

<PartyId> <!--one or more-->

...

</PartyId>

<PartyRef>

...

</PartyRef>

<CollaborationRole> <!--one or more-->

...

</CollaborationRole>

<Certificate> <!--one or more-->

...

</Certificate>

<DeliveryChannel> <!--one or more-->

...

</DeliveryChannel>

<Transport> <!--one or more-->

...

</Transport>

<DocExchange> <!--one or more-->

...

</DocExchange>

</PartyInfo>

The PartyInfo element consists of the following child elements:

· One or more REQUIRED PartyId elements that provide a logical identifier for the organization.

· A REQUIRED PartyRef element that provides a pointer to more information about the Party.

· One or more REQUIRED CollaborationRole elements that identify the roles that this Party can play in the context of a Process Specification.

· One or more REQUIRED Certificate elements that identify the certificates used by this Party in security functions.

· One or more REQUIRED DeliveryChannel elements that define the characteristics of each delivery channel that the Party can use to receive Messages. It includes both the transport level (e.g. HTTP) and the messaging protocol (e.g. ebXML Message Service).

· One or more REQUIRED Transport elements that define the characteristics of the transport protocol(s) that the Party can support to receive messages.

· One or more REQUIRED DocExchange elements that define the Message-exchange characteristics, such as the Message-exchange protocol, that the Party can support.

7.2.1 PartyId element

The REQUIRED PartyId element provides a logical identifier that MAY be used to logically identify the Party. Additional PartyId elements MAY be present so as to provide for alternative logical identifiers for the Party. This permits a large organization, for example, to have different identifiers for different purposes. The value of the PartyId element is any string that provides a unique identifier. The identifier MAY be any identifier that is understood by both Parties to a CPA. Typically, the identifier would be listed in a well-known directory such as DUNS or in any naming system specified by [ISO6523].

The PartyId element has a single attribute: type that has a string value.

If the type attribute is present, then it provides a scope or namespace for the content of the PartyId element.

If the type attribute is not present, the content of the PartyId element MUST be a URI that conforms to [RFC2396]. It is RECOMMENDED that the value of the type attribute be an URN that defines a namespace for the value of the PartyId element. Typically, the URN would be registered as a well-known directory of organization identifiers.
The following example illustrates two URI references.

 <PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>

 <PartyId type = "uriReference">urn:www.example.com</PartyId>

The first example is the URN for the Party's DUNS number, assuming that Dun and Bradstreet has registered an URN for DUNS numbers with the Internet Assigned Numbers Authority. The last field is the DUNS number of the organization.

The second example shows an arbitrary URN. This might be a URN that the Party has registered with the Internet Assigned Numbers Authority (IANA) to identify itself directly.

7.2.2 PartyRef element

The PartyRef element provides a link, in the form of a URI, to additional information about the Party. Typically, this would be the URL from which the information can be obtained. The information might be at the Party's web site or in a publicly accessible repository such as an ebXML repository, a UDDI repository, or an LDAP directory. Information available at that URI MAY include contact names, addresses, and phone numbers, and perhaps more information about the business processes that it supports. This information MAY be in the form of an ebXML Core Component [EBXMLCC]. It is not within the scope of this specification to define the content or format of the information at that URI.

An example of the PartyRef element is:

<PartyRef xlink:type="simple"

xlink:href="http://example2.com/example.com"/>

The PartyRef element is an [XLINK] simple link. It has two attributes as follows:

· a REQUIRED xlink:type attribute

· a REQUIRED xlink:href attribute

7.2.2.1 xlink:type attribute

The xlink:type attribute SHALL have a FIXED value of 'simple'. This identifies the element as being an [XLINK] simple link.

7.2.2.2 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is an URI that conforms to [RFC2396] that identifies the location of the external information about the Party.

7.2.3 CollaborationRole element

<CollaborationRole id="N11" >

 <CertificateRef certId = "N03">

 <ProcessSpecification name="BuySell" version="1.0" xlink:href="..."/>

 <Role name="buyer" xlink:href="..."/>

 <!-- primary binding with "preferred" DeliveryChannel -->

 <ServiceBinding name="some process" channelId="N02">

 <!-- override "default" deliveryChannel for selected message(s)-->

 <Override action="OrderAck" channelId="N05"

xlink:type="locator"

 xlink:href="..."/>

 </ServiceBinding>

 <!-- the first alternate binding -->

 <ServiceBinding channelId="N04">

 <Override action="OrderAck" channelId="N05"

xlink:type="locator"

xlink:href="..."/>

 </ServiceBinding>

</CollaborationRole>

The CollaborationRole element associates a Party with a specific role in the Business Process that is defined in the Process-Specification Document. Generally, the Process Specification is defined in terms of roles such as "buyer" and "seller". The association between a specific Party and the role(s) it is capable of fulfilling within the context of a Process Specification is defined in both the CPP and CPA documents. In a CPP, the CollaborationRole element identifies which role the Party is capable of playing in each Process Specification referenced by the CPP.

The CollaborationRole element SHALL consist of a CertificateRef element, a ProcessSpecification element, a Role element and one or more ServiceBinding child elements. The CertificateRef element identifies the certificate to be used. The ProcessSpecification element identifies the Business Process that is described in the Process-Specification

Document that defines such role. The Role element identifies which role the Party is capable of supporting. Each ServiceBinding element provides a binding of the role to a default DeliveryChannel. The default DeliveryChannel describes the receive properties of all Message traffic that is to be received by the Party within the context of the role in the identified Process-Specification Document. Alternative DeliveryChannels may be specified for specific purposes, using Override elements as described below.

When there are more than one ServiceBinding child elements of a CollaborationRole, then the order of the ServiceBinding elements SHALL be treated as signifying the Party's preference starting with highest and working towards lowest. The default delivery channel for a given Process Dis the delivery channel identified by the highest-preference ServiceBinding element that references the particular Process-Specification document.

.

NOTE: When a CPA is composed, only ServiceBinding elements that are compatible between the two Parties are retained. Each Party has a default delivery channel for each Process Specification Document referenced in the CPA. For each Process-Specification Document, the default delivery channel for each Party is the delivery channel that is indicated by the channelId attribute in the highest-preference ServiceBinding element that references that Process-Specification Document.
NOTE: The ServiceBinding preferences are applied in choosing the highest-preference delivery channels that are compatible between the two Parties when composing a CPA.

NOTE: An implementation MAY provide the capability of dynamically assigning delivery channels on a per Message basis during performance of the Process Specification. The delivery channel selected would be chosen, based on present conditions, from those identified by ServiceBinding elements that refer to the Process Specification that is sending the Message. If more than one delivery channel is applicable, the one referred to by the highest-preference ServiceBinding element is used.

The CollaborationRole element has the following attribute:

· A REQUIRED roleId attribute,

7.2.3.1 id attribute

The REQUIRED id attribute is an [XML] ID attribute by which this CollaborationRole element can be referenced from elsewhere in the CPP document.

7.2.3.2 CertificateRef element

The CertificateRef element contains an IDREF attribute, certId that identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value.
7.2.3.3 certId attribute

The certId attribute is an [XML] IDREF that associates the CollaborationRole with a Certificate.

NOTE: This certID attribute relates to the authorizing role in the Process Specification while the certificates identified in the delivery-channel description relate to Message exchanges.

7.2.4 ProcessSpecification Element

The ProcessSpecification element provides the link to the Process-Specification Document that defines the interactions between the two Parties. This document is prepared in accord with the ebXML Business Process Specification Schema specification [BPMSPEC]. The Process-Specification Document MAY be kept in an ebXML Repository.

More than one ProcessSpecification element MAY be provided in a CPP Document so that a Party can indicate its capability for performing multiple Business Brocesses. The syntax is as follows:

<ProcessSpecification version="1.0" name="Buy and Sell"

xlink:type="locator"

xlink:href="http://www.ebxml.org/services/purchasing.xml"/>

The ProcessSpecification element has the following attributes:

· a REQUIRED name attribute,

· a version attribute,

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute.

7.2.4.1 name attribute

The value of the name attribute is the name of the role and is matched to the corresponding role name in the Process-Specification Document.

7.2.4.2 version attribute

The ProcessSpecification element MAY include a version attribute to identify the version of the Process-Specification Document that is referenced by the xlink:href attribute.

7.2.4.3 xlink:type attribute

The xlink:type attribute has a FIXED value of 'locator'. This identifies the element as being an [XLINK] locator.

7.2.4.4 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is an URI that conforms to [RFC2396]. It identifies the location of the element or attribute within the Process Specification that defines the role in the context of the business process.

7.2.5 Role element

The REQUIRED Role element identifies which role in the Process Specification the Party is capable of supporting via the ServiceBinding element(s) siblings within this CollaborationRole element.

The Role element has three attributes as follows:

· a REQUIRED name attribute,

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute.

7.2.5.1 name attribute

The REQUIRED name attribute is a string that gives a name to the Role. Its value is taken from one of the following sources in the Process Specification [BPMSPEC] that is referenced by the ProcessSpecification element depending upon which element is the "root" (highest order) of the process referenced:

· initiator attribute of the binary-collaboration element

· responder attribute of the binary-collaboration element

· from attribute of the business-transaction-activity element

· to attribute of the business-transaction-activity element

· from attribute of the collaboration-activity element

· to attribute of the collaboration-activity element

· name attribute of the business-partner-role element

7.2.5.2 xlink:type attribute

The xlink:type attribute has a FIXED value of 'locator'. This identifies the element as being an [XLINK] locator.

7.2.5.3 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that identifies the Process-Specification Document and is an URI that conforms to [RFC2396].

7.2.6 ServiceBinding element

The ServiceBinding element identifies a DeliveryChannel element for all of the Message traffic that is to be sent to the Party within the context of the identified Process-Specification Document. An example of the ServiceBinding element is:

<ServiceBinding name="SomeProcess" channelId="X03"/>

The ServiceBinding element MAY have zero or more Override child elements. Each Override element SHALL specify a different DeliveryChannel for selected Messages that are to be received by the Party in the context of the Process Specification that is associated with the parent ServiceBinding element.

The ServiceBinding element has three attributes as follows:

· a REQUIRED name attribute,

· a REQUIRED channelId attribute.

7.2.6.1 name attribute

The value of the name attribute is a string value that labels the ServiceBinding element. The value of the Name attribute SHALL be used as the value of the Service element in an ebXML Message-Header Document.

7.2.6.2 channelId attribute

The channelId attribute is an [XML] IDREF that identifies the DeliveryChannel that SHALL provide a default technical binding for all of the message traffic that is received for the Process Specification that is referenced by the ProcessSpecification element.

7.2.7 Override element

The Override element provides a Party with the ability to map, or bind, a different DeliveryChannel to selected Messages that are to be received by the Party within the context of the parent ServiceBinding element.

The Override element has the following attributes:

· a REQUIRED action attribute,

· a REQUIRED channelId attribute,

· a FIXED xlink:type attribute,

· an xlink:href attribute

Under a given ServiceBinding element, there SHALL be only one Override element whose action attribute has a given value.

NOTE: It is possible that when a CPA is composed from two CPPs, a delivery channel in one CPP with an Override element will not be compatible with the other Party. This incompatibility must be resolved either by negotiation or by reverting to a compatible default delivery channel.

7.2.7.1 action attribute

The REQUIRED action attribute is a string that identifies the message that is to be associated with the DeliveryChannel that is identified by the channelId attribute. The value of the action attribute MUST match the corresponding request or response element/attribute in the Process-Specification Document that is referenced by the ProcessSpecification element.

7.2.7.2 channelId attribute

The REQUIRED channelId attribute is an [XML] IDREF that identifies the DeliveryChannel element that is to be associated with the Message that is identified by the action attribute.

7.2.7.3 xlink:type attribute

The xlink:type attribute has a FIXED value of 'locator'. This identifies the element as being an [XLINK] locator.

7.2.7.4 xlink:href attribute

The xlink:href attribute MAY be present. If present, it SHALL provide an absolute [XPointer] URI expression that specifically identifies the business-transaction within the associated Process-Specification Document [BPMSPEC] that is identified by the ProcessSpecification element.

7.2.8 Certificate element

The Certificate element defines certificate information for use in this CPP. One or more certificates may be defined for use in the various security functions in the CPP. An example of the Certificate element is:

<Certificate certId = "N03">

<ds:KeyInfo>. . .</ds:KeyInfo>

</Certificate>
The Certificate element has a single REQUIRED attribute: certId. The Certificate element has a single child element: ds:KeyInfo.

7.2.8.1 certId attribute

The certId attribute is an ID attribute. Its is referred to in a CertificateRef element, using an IDREF attribute, where a certificate is specified elsewhere in the CPP. For example:

<CertificateRef certId = "N03"/>

7.2.8.2 ds:KeyInfo element

The ds:KeyInfo element defines the certificate information. The content of this element and any subelements are defined by the XML Digital Signature specification [XMLDSIG].

NOTE: Software for creation of CPPs and CPAs may recognize the ds:KeyInfo element and insert the subelement structure necessary to define the certificate.

7.2.9 DeliveryChannel element

[image: image6.wmf]Figure 1: Structure of CPP & Business Process Specification in

Repository

Repository

Business

collaboration

protocol

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

collaboration

protocol

A delivery channel is a combination of a Transport element and a DocExchange element that describes the Party's Message-receiving characteristics. The CPP SHALL contain one or more DeliveryChannel elements, one or more Transport elements, and one or more DocExchange elements. Each delivery channel can refer to any combination of a DocExchange element and a Transport element. The same DocExchange element or the same Transport element can be referred to by more than one delivery channel. Two delivery channels may use the same transport protocol and the same document-exchange protocol and differ only in details such as communication addresses or security definitions. The following figure illustrates three delivery channels.

The delivery channels have ID attributes with values "DC1", "DC2", and "DC3". Each delivery channel contains one transport definition and one document-exchange definition. Each transport definition and each document-exchange definition also has a name as shown.

A specific delivery channel may be associated with each ServiceBinding element or Override element (Action attribute). Following is the delivery-channel syntax.

<DeliveryChannel channelId="N04" transportId="N05" docExchangeId="N06">

<Characteristics

nonrepudiationOfOrigin = "true"

nonrepudiationOfReceipt = "true"

secureTransport = "true"

confidentiality = "true"

authenticated = "true"

authorized = "true"/>

</DeliveryChannel>

Each DeliveryChannel element identifies one Transport element and one DocExchange element that make up a single delivery channel definition.

The DeliveryChannel element has the following attributes:

· A REQUIRED channelId attribute

· A REQUIRED transportId attribute

· A REQUIRED docExchangeId attribute

The DeliveryChannel element has one required child element, Characteristics.

7.2.9.1 channelId attribute

The ChannelId element is an [XML] ID attribute that uniquely identifies the DeliveryChannel element for reference, using ID REF attributes, from other parts of the CPP or CPA.

7.2.9.2 transportId attribute

The transportId attribute is an [XML] IDREF that identifies the Transport element that defines the transport characteristics of the delivery channel. It MUST have a value that is equal to the value of a transportId attribute of a Transport element elsewhere within the CPP Document.

7.2.9.3 docExchangeId attribute

The docExchangeId attribute is an [XML] IDREF that identifies the DocExchange element that defines the Document-exchange characteristics of the delivery channel. It MUST have a value that is equal to the value of a docExchangeId attribute of a DocExchange element elsewhere within the CPP Document.

7.2.10 Characteristics element

The Characteristics element describes the security characteristics provided by the delivery channel. The Characteristics element has the following attributes:

· a nonrepudiationOfOrigin attribute

· a nonrepudiationOfReceipt attribute

· a secureTransport attribute

· a confidentiality attribute

· an authenticated attribute

· an authorized attribute

7.2.10.1 nonrepudiationOfOrigin attribute

The nonrepudiationOfOrigin attribute is a Boolean with possible values "true" and "false". If the value is "true" then the delivery channel REQUIRES the message to be digitally signed by the certificate of the Party that sent the message.

7.2.10.2 nonrepudiationOfReceipt attribute

The nonrepudiationOfReceipt attribute is a Boolean with possible values of "true" and "false". If the value is "true" then the delivery channel REQUIRES that the message be acknowledged by a digitally signed message, signed by the certificate of the Party that received the message, that includes the digest of the message being acknowledged.

7.2.10.3 secureTransport attribute

The secureTransport attribute is a Boolean with possible values "true" and "false". If the value is "true" then it indicates that the delivery channel uses a secure transport protocol such as [SSL] or [IPSEC].

7.2.10.4 confidentiality attribute

The confidentiality attribute is a Boolean with possible values "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the message be encrypted in a persistent manner. It MUST be encrypted above the level of the transport and delivered, encrypted, to the application.

7.2.10.5 authenticated attribute

The authenticated attribute is a Boolean with possible values "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the sender of the message be authenticated before delivery to the application.
7.2.10.6 authorized attribute

The authorized attribute is a Boolean with possible of values "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the sender of the message be authorized before delivery to the application.

7.2.11 Transport element

The Transport element of the CPP defines the Party's capabilities with regard to communication protocol, encoding, and transport security information.

The overall structure of the Transport element is as follows:

<Transport transportId = "N05">

<!--protocols are HTTP, SMTP, and FTP-->

<Protocol version = "1.1">HTTP</Protocol>

<!--one or more endpoints-->

<Endpoint uri="http://example.com/servlet/ebxmlhandler"

type = "request"/>

<TransportSecurity> <!--0 or 1 times-->

<Protocol version = "3.0">SSL</Protocol>

<CertificateRef certId = "N03"/>

</TransportSecurity>

</Transport>

7.2.11.1 TransportId attribute

The Transport element has a single REQUIRED transportId attribute, of type [XML] ID, that provides a unique identifier for each Transport element, which SHALL be referred to by the transportId IDREF attribute in a DeliveryChannel element elsewhere within the CPP or CPA document.

7.2.12 Transport Protocol and Version

Supported communication protocols are HTTP, SMTP, and FTP. The CPP can specify as many protocols as the Party is capable of supporting. The Version attribute identifies the specific version of the protocol.

NOTE: It is the aim of this specification to enable any transport capable of carrying MIME content to be described using the vocabulary defined herein.

7.2.13 Endpoint Element

The uri attribute of the Endpoint element specifies the Party's communication addressing information. One or more Endpoint elements SHALL be provided for each Transport element in order to provide different addresses for different purposes. The value of the uri attribute is an URI that contains the electronic address of the Party in the form required for the selected protocol. The value of the uri attribute SHALL conform to the syntax for expressing URIs as defined in [RFC2396].

The type attribute identifies the purpose of this endpoint. The value of type is an enumeration; permissible values are "login", "request", "response", "error", and "allPurpose". There can be, at most, one of each. The type attribute MAY be omitted. If it is omitted, its value defaults to "allPurpose". The "login" endpoint MAY be used for the address for the initial Message between the two Parties. The "request" and "response" endpoints are used for request and response Messages, respectively. The "error" endpoint MAY be used as the address for error messages issued by the Messaging service. If no "error" endpoint is defined, these error messages SHALL be sent to the "response" address, if defined, or to the "allPurpose" endpoint. To enable error Messages to be received, each Transport element SHALL contain at least one endpoint of type "error", "response", or "allPurpose".

7.2.14 Transport Protocols

In the following sections, we discuss the specific details of each supported transport protocol.

7.2.14.1 HTTP

HTTP is Hypertext Transfer Protocol [HTTP]. For HTTP, the address is an URI that SHALL conform to [RFC2396]. Depending on the application, there MAY be one or more endpoints, whose use is determined by the application.

Following is an example of an HTTP endpoint:

<Endpoint uri="http://example.com/servlet/ebxmlhandler"

type = "request"/>

The request and response endpoints MAY be dynamically overridden for a particular request or asynchronous response by application-specified URIs exchanged in business Documents exchanged under the CPA.

For a synchronous response, the response endpoint is ignored if present. A synchronous response is always returned on the existing connection, i.e. to the URI that is identified as the source of the connection.

7.2.14.2 SMTP

SMTP is Simple Mail Transfer Protocol[SMTP]. For use with this standard, Multipurpose Internet Mail Extensions [MIME] MUST be supported. The MIME media type used by the SMTP transport layer is Application with a sub-type of octet-stream.

For SMTP, the communication address is the fully qualified mail address of the destination Party as defined by [RFC822]. Following is an example of an SMTP endpoint:

<Endpoint uri="mailto:ebxmlhandler@example.com"

type = "request"/>
SMTP with MIME automatically encodes or decodes the Document as required, on a link-by-link basis, and presents the decoded Document to the destination document-exchange function. If the application design is such that the choices in the DocumentExchange element and the ProcessSpecification element are intended to be independent of the choice of transport protocol, it is permissible to specify a MessageEncoding element under the DocExchange element.

NOTE: The SMTP mail transfer agent encodes binary data (i.e. data that are not 7-bit ASCII) unless it is aware that the upper level (mail user agent) has already encoded the data. If the data are encoded in the document-exchange level (MessageEncoding), the information that the data are already encoded SHOULD be passed to the mail user agent.
NOTE: SMTP by itself (without any authentication or encryption) is subject to denial of service and masquerading by unknown Parties. It is strongly suggested that those Partners who choose SMTP as their transport layer also choose a suitable means of encryption and authentication either in the document-exchange layer or in the transport layer (S/MIME).

NOTE: SMTP is an asynchronous protocol that does not guarantee a particular quality of service. A transport-layer acknowledgment (i.e. an SMTP acknowledgment) to the receipt of a mail Message constitutes an assertion on the part of the SMTP server that it knows how to deliver the mail Message and will attempt to do so at some point in the future. However, the Message is not hardened and may never be delivered to the recipient. Furthermore, the sender will see a transport-layer acknowledgment only from the nearest node. If the Message passes through intermediate nodes, SMTP does not provide an end-to-end acknowledgment. Therefore receipt of an SMTP acknowledgement does not guarantee that the Message will be delivered to the application and failure to receive an SMTP acknowledgment is not evidence that the Message was not delivered. It is recommended that the reliable Messaging protocol in the ebXML Messaging Service be used with SMTP.

7.2.14.3 FTP

[FTP is File Transfer Protocol [FTP].

Since a delivery channel specifies receive characteristics, Each Party sends a Message using FTP PUT. The endpoint specifies the user id and input directory path (for PUTs to this Party). An example of an FTP endpoint is:

<Endpoint uri="ftp://userid@server.foo.com"

type = "request"/>
NOTE: It is assumed that the FTP implementation will automatically set transfer type (binary or ASCII), passive mode if needed, and passive mode control port number if needed.

7.2.15 Transport Security

The TransportSecurity element provides the Party's security specifications for the transport layer of the CPP. It may be omitted if transport security will not be used for any CPAs composed from this CPP. Unless otherwise specified below, transport security applies to Messages in both directions.

Following is the syntax:

<TransportSecurity>

<Protocol version = "3.0">SSL</Protocol>

<CertificateRef certId = "N03"/>

</TransportSecurity>

7.2.15.1 Protocol element

The value of the Protocol element can identify any transport security protocol that the Party is prepared to support. The version attribute identifies the version of the specified protocol.

The specific security properties depend on the services provided by the identified protocol. For example, SSL performs certificate-based encryption and certificate-based authentication.

7.2.15.2 CertificateRef element

The REQUIRED CertificateRef element contains an ID REF attribute, certId that identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value.

7.2.15.3 Specifics for HTTP

For encryption with HTTP, the protocol is SSL[SSL] (Secure Socket Layer) Version 3.0, which uses public-key encryption.

Authentication of the client to the server may be either by password or by certificate. Certificate authentication is SSL version 3.0. If each Party may act as a server at times and a client at other times, the CPA must specify certificates for both Parties.

The password algorithm is HTTPAuthentication. The server presents a certificate to the client that authenticates the server. The client uses that certificate to encrypt the password. If each Party may act as a client at times and as a server at other times, the CPA must specify password authentication and certificate authentication for both Parties.

7.3 DocExchange element

The DocExchange element provides information that the Parties must agree on regarding exchange of Documents between them. This information includes the Messaging service properties (e.g. ebXML Messaging Service[MSSPEC]).

Following is the structure of the DocExchange element of the CPP. Subsequent sections describe each child element in greater detail.

<DocExchange docExchangeId = "N06">

<ebXMLBinding version = "0.92">

<MessageEncoding> <!--cardinality 0 or 1-->

...

</MessageEncoding>

<ReliableMessaging> <!--cardinality 0 or 1-->

...

</ReliableMessaging>

<NonRepudiation> <!--cardinality 0 or 1-->

...

</NonRepudiation>

<DigitalEnvelope> <!--cardinality 0 or 1-->

...

</DigitalEnvelope>

<NamespaceSupported> <!-- 1 or more -->

...

</NamespaceSupported>

</ebXMLBinding>

</DocExchange>
The DocExchange element of the CPP defines the properties of the Messaging service to be used with CPAs composed from the CPP.

The DocExchange element is comprised of a single ebXMLBinding child element.

NOTE: The document-exchange section can be extended to other Messaging services by adding additional xxxBinding elements that describe the other services.

7.3.1 docExchangeId attribute

The DocExchange element has a single docExchangeId attribute that is an [XML] ID that provides an unique identifier which may be referenced from elsewhere within the CPP document.
7.3.2 ebXMLBinding element

The ebXMLBinding element describes properties specific to the ebXML Message Service [MSSPEC] The ebXMLBinding element is comprised of the following child elements:

· Zero or one MessageEncoding element which specifies how Messages are to be encoded by the document-exchange layer.

· Zero or one ReliableMessaging element which specifies the characteristics of reliable Messaging.

· Zero or one NonRepudiation element which specifies the requirements for signing the Message.

· Zero or one DigitalEnvelope element which specifies the requirements for encryption by the digital-envelope[DIGENV] method.

· Zero or more NamespaceSupported elementswhich identify any namespace extensions supported by the Messaging service implementation.

7.3.3 version attribute

The ebXMLBinding element has a single REQUIRED version attribute that refers to the version of the specification of the messaging service being used.

7.3.4 MessageEncoding element

The MessageEncoding element specifies how the Messages are to be encoded by the document-exchange layer for transmission. Encoding choices depend on the properties of the Message-exchange protocol specified by the ebXMLBinding element. An example for BASE64 [MIME] is:

<MessageEncoding>BASE64</MessageEncoding>

If the MessageEncoding element is omitted, there is no document-exchange encoding.

7.3.5 ReliableMessaging element

The ReliableMessaging element specifies the properties of reliable ebXML Message exchange. The default that applies if the ReliableMessaging element is omitted is "BestEffort". See Section 7.3.5.1. The following is the element structure:

<ReliableMessaging deliverySemantics="OnceAndOnlyOnce"

idempotency="false"

persistDuration="30S">

 <!--The pair of elements Retries, RetryInterval

 has cardinality 0 or 1-->

<Retries>5</Retries>

<RetryInterval>60</RetryInterval> <!--time in seconds-->

</ReliableMessaging>

The ReliableMessaging element is comprised of the following child elements:

· a Retries element

· a RetryInterval element

The ReliableMessaging element has attributes as follows:

· a REQUIRED deliverySemantics attribute and

· a REQUIRED idempotency attribute

· a REQUIRED persistDuration element

7.3.5.1 deliverySemantics attribute

The deliverySemantics attribute of the ReliableMessaging element specifies the degree of reliability of Message delivery. This attribute is an enumeration of possible values that include the following:

· OnceAndOnlyOnce

· BestEffort

A value of "OnceAndOnlyOnce" specifies that a Message must be delivered exactly once. "BestEffort" specifies that reliable Messaging semantics are not to be used.

7.3.5.2 idempotency attribute

The idempotency attribute of the ReliableMessaging element specifies whether the Party requires that all Messages exchanged be subject to an idempotency test (detection and discard of duplicate messages) in the document-exchange layer. The attribute is a Boolean with possible values "true" and "false". If the value of the attribute is "true", all Messages are subject to the test. If the value is "false", messages are not subject to an idempotency test in the document-exchange layer. Testing for duplicates is based on the Message identifier; other information that is carried in the Message header MAY also be tested, depending on the context.

NOTE: Additional testing for duplicates may take place in the business application based on application information in the Messages (e.g. purchase order number).

The idempotency test checks whether a Message duplicates a prior message between the same client and server. If the idempotency test is requested, the receiving Messaging service passes a duplicate Message to the recipient Business Process with a "duplicate" indication. The receiving Messaging service also returns a "duplicate" indication to the sender of the duplicate. One of the main purposes of this test is to aid in retry following timeouts and in recovery following node failures. In these cases, the sending Party MAY have sent request Messages and not received responses. The sending Party MAY re-send such a Message. If the original Message had been received, the receiving server discards the duplicate Message and re-sends the original results to the requester.

If a communication protocol always checks for duplicate Messages, the check in the communication protocol overrides any idempotency specifications in the CPA.

7.3.5.3 persistDuration attribute

The value of the persistDuration attribute is the minimum length of time, expressed as a [XMLSchema] timeDuration, that data from a Message that is sent reliably is kept in Persistent Storage by an ebXML Messaging-service implementation that receives that Message.

7.3.5.4 Retries and RetryInterval elements

The Retries and RetryInterval elements specify the permitted number of retries and interval between retries (in seconds) of a request following a timeout. The purpose of the RetryInterval element is to improve the likelihood of success on retry be deferring the retry until any temporary conditions that caused the error might be corrected.

The Retries and RetryInterval elements MUST be included together or MAY be omitted together. If they are omitted, the values of the corresponding quantities (number of retries retry interval) are a local matter at each Party.

7.3.6 NonRepudiation element

Non-repudiation both proves who sent a Message and prevents later repudiation of the contents of the Message. Non-repudiation is based on signing the Message using XML Digital Signature [XMLDSIG]. The element structure is as follows:

<NonRepudiation>

<Protocol version = "1.0">XMLDSIG</Protocol>

<HashFunction>sha1</HashFunction>

<SignatureAlgorithm>rsa</SignatureAlgorithm>

<CertificateRef certId = "N03"/>

</NonRepudiation>

If the NonRepudiation element is omitted, the Messages are not digitally signed.

The NonRepudiation element is comprised of the following child elements:

· The REQUIRED Protocol element,

· the REQUIRED HashFunction (e.g. SHA1, MD5) element,

· the REQUIRED SignatureAlgorithm element,

· and theREQUIRED Certificate element.

7.3.6.1 Protocol element

The Protocol element identifies the technology that will be used to digitally sign a Message. It has a single REQUIRED version attribute that is a string that identifies the version of the specified technology. An example of the Protocol element follows:

<Protocol version="2000/10/31">http://www.w3.org/2000/09/xmldsig#

</Protocol>

7.3.6.2 HashFunction element

The HashFunction element identifies the algorithm that is used to compute the digest of the Message being signed.

7.3.6.3 SignatureAlgorithm element

The SignatureAlgorithm element identifies the algorithm that is used to compute the value of the digital signature.

7.3.6.4 CertificateRef element

The CertificateRef element refers to one of the Certificate elements elsewhere within the CPP document, using the certId IDREF attribute.

7.3.7 DigitalEnvelope element

The DigitalEnvelope element [DIGENV] is an encryption procedure in which the Message is encrypted by symmetric encryption (shared secret key) and the secret key is sent to the Message recipient encrypted with the recipient's public key. The element structure is:

<DigitalEnvelope>

<Protocol version = "2.0">S/MIME</Protocol>

<EncryptionAlgorithm>rsa</EncryptionAlgorithm>

<CertificateRef certId = "N03"/>

</DigitalEnvelope>

7.3.7.1 Protocol element

The Protocol element identifies the security protocol to be used. The version attribute identifies the version of the protocol.

7.3.7.2 EncryptionAlgorithm element

The EncryptionAlgorithm element identifies the encryption algorithm to be used.

7.3.7.3 CertificateRef element

The CertificateRef element identifies the certificate to be used by means of its certId attribute. The certId attribute is an attribute of type [XML] ID REF, which refers to a matching ID attribute in a Certificate element elsewhere in the CPP or CPA.

7.3.8 Namespaces Supported

The NamespaceSupported element identifies any namespace extensions supported by the Messaging service implementation. Examples are Security Services Markup Language [S2ML] and Transaction Authority Markup Language [XAML]. For example, support for the S2ML namespace would be defined as follows:

<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd"

version = "0.8">http://www.s2ml.org/s2ml</NamespaceSupported>
7.4 ds:Signature element

The CPP MAY be digitally signed using technology that conforms with the XML Digital Signature specification [XMLDSIG]. The ds:Signature element is the root of a subtree of elements that MAY be used for signing the CPP. The syntax is:

<ds:Signature>...</ds:Signature>

The content of this element and any subelements are defined by the XML Digital Signature specification. See section 8.8 for a detailed discussion.

NOTE: Software for creation of CPPs and CPAs may recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature creation itself is a cryptographic process that is outside the scope of this specification.

7.5 Comment element

The CollaborationProtocolProfile element MAY contain zero or more Comment elements. The Comment element is a textual note that MAY be added to serve any purpose the author desires. The language of the Comment is identified by a REQUIRED xml:lang attribute. The xml:lang attribute MUST comply with the rules for identifying languages specified in [XML]. If multiple Comment elements are present, each SHOULD have a unique xml:lang attribute value. An example of a Comment element follows:

<Comment xml:lang=”en-gb”>yadda yadda, blah blah</Comment>

8 CPA Definition

A CPA defines the capabilities that two Parties must agree to enable them to engage in electronic business. These capabilities include both "technology" capabilities such as supported communication and Messaging protocols, and "business capabilities" in terms of what business processes they jointly support for the purposes of the particular CPA. This section defines and discusses the details of the CPA. The discussion is illustrated with some XML fragments and reference should be made to the DTD and sample CPA in the appendices.

Most of the XML elements in this section are described in detail in section 7, "CPP Definition". In general, this section does not repeat that information. The discussions in this section are limited to those elements that are not in the CPP or for which additional discussion is required in the CPA context. Reference should also be made to the DTD and sample CPA in the appendices.

8.1 CPA Structure

<CollaborationProtocolAgreement id = "N01"

xmlns="http://www.ebxml.org/namespaces/tradePartner"

 xmlns:bpm="http://www.ebxml.org/namespaces/businessProcess"

xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"

xmlns:xlink = "http://www.w3.org/1999/xlink">

<CPAType> <!--may appear 0 or 1 times-->

…

</CPAType>

<Status value = "proposed"/>

<Start>1988-04-07T18:39:09</Start>

<End>1990-04-07T18:40:00</End>

<!--ConversationConstraints may appear 0 or 1 times-->

<ConversationConstraints invocationLimit = "100"

concurrentConversations = "4"/>

<PartyInfo>

…

</PartyInfo>

<PartyInfo>

…

</PartyInfo>

 <!--ds:signature may appear 0 or more times-->

<ds:Signature>any combination of text and elements

</ds:Signature>

<Comment xml:lang=”en-gb">any text</Comment> <!--zero or more-->

</CollaborationProtocolAgreement>
8.2 CollaborationProtocolAgreement element

The CollaborationProtocolAgreement element is the root element of a collaboration protocol agreement document or CPA. It has a required id attribute of type [XML] CDATA that supplies a unique idenfier for the Document. The value of the id attribute is assigned by one Party and used by both. The value of the id attribute is used as the value of the CPAId element in the ebXML Message header [MSSPEC].

NOTE: Each Party MAY associate a local identifier with the id attribute.

The CollaborationProtocolAgreement element has REQUIRED [XML] Namespace [XMLNS] declarations that are defined in Section 7, "CPP Definition".

The CPA is comprised of the following child elements, each of which is described in greater detail in subsequent sections:

· a CPAType element that provides information about the general nature of the CPA
· a REQUIRED Status element that identifies the state of the process that creates the CPA
· a REQUIRED Start element that records the date and time that the CPA goes into effect

· a REQUIRED End element that records the date and time after which the CPA must be renegotiated by the Parties
· a ConversationConstraints element documents certain agreements about Conversation processing

· two REQUIRED PartyInfo elements, one for each Party to the CPA
· one or more ds:Signature elements that provide signing of the CPA using the XML Digital Signature [XMLDSIG] standard

8.3 CPAType element

The CPAType element MAY be present in a CPA Document. It provides information about the general nature of the CPA. An example of this element follows:

<CPAType>

<Protocol version = "1.1">PIP3A4</Protocol>

<Type>RNIF</Type>

</CPAType>

The CPAType element is comprised of the following child elements:

· a REQUIRED Protocol element identifies the business-level protocol. An example is PIP3A4, a RosettaNet™ Partner Interface Process.

· a REQUIRED Type element provides additional information about the business protocol. Specific values depend on the particular protocol and its optional features. An example is RNIF (RosettaNet Implementation Framework).

The Protocol element has a required attribute, version, whose value specifies the version of the protocol that is to be used.

NOTE: An implementation may use the CPAType element to determine whether it already has the code to support this particular protocol.

8.4 Status element

The Status element records the state of the composition/negotiation process that creates the CPA. An example of the Status element follows:

<Status value = "proposed"/>

The Status element has a value attribute that records the current state of composition of the CPA. The value of this attribute is an enumeration of the following possible values:

· proposed - meaning that the CPA is still being negotiated by the Parties
· signed - meaning that the CPA has been "signed" by the Parties. This "signing" MAY take the form of a digital signature that is described in section 8.8 below.

NOTE: The Status element MAY be used by a CPA composition and negotiation tool to assist in the process of building a CPA.

8.5 CPA Lifetime

The lifetime of the CPA is given by the Start and End elements. The syntax is:

<Start>1988-04-07T18:39:09</Start>

<End>1990-04-07T18:40:00</End>

8.5.1 Start element

The Start element specifies the starting date and time of the CPA. The Start element SHALL be a string value that conforms to the content model of a canonical timeInstant as defined in the XML Schema Datatypes Specification [XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, a Start element would have the following value:

1999-05-31T13:20:00Z

The Start element SHALL be represented as Coordinated Universal Time (UTC).

8.5.2 End element

The End element specifies the ending date and time of the CPA. The End element SHALL be a string value that conforms to the content model of a canonical timeInstant as defined in the XML Schema Datatypes Specification [XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, an End element would have the following value:

1999-05-31T13:20:00Z

The End element SHALL be represented as Coordinated Universal Time (UTC).

When the end of the CPA's lifetime is reached, any Business Transactions that are still in progress SHALL be allowed to complete and no new Business Transactions SHALL be started. When all in-progress Business Transactions on each Conversation are completed, the Conversation shall be terminated whether or not it was completed.

NOTE: It should be understood that if an application defines a Conversation as consisting of multiple Business Transactions, such a Conversation may be terminated with no error indication when the end of the lifetime is reached. The runtime could provide an error indication to the application.

NOTE: It should be understood that it may not be feasible to wait for outstanding Conversations to terminate before ending the CPA since there is no limit on how long a Conversation may last.

NOTE: The runtime SHOULD return an error indication to both Parties when a new Business Transaction is started under this CPA after the date and time specified in the End element.

8.6 ConversationConstraints element

The ConversationConstraints element places limits on the number of Conversations under the CPA. An example of this element follows:

<ConversationConstraints invocationLimit = "100"

concurrentConversations = "4"/>

The ConversationConstraints has two attributes as follows:

· the invocationLimit attribute

· the concurrentConversations attribute

8.6.1 invocationLimit attribute

The invocationLimit attribute defines the maximum number of Conversations that can be processed under the CPA. When this number has been reached, the CPA is terminated and must be renegotiated. If no value is specified, there is no upper limit on the number of Conversations and the lifetime of the CPA is controlled solely by the End element.

8.6.2 concurrentConversations attribute

The concurrentConversations attribute defines the maximum number of Conversations that can be in process under this CPA at the same time. If no value is specified, processing of concurrent Conversations is strictly a local matter.

NOTE: The concurrentConversations attribute provides a parameter for the Parties to use when it is necessary to limit the number of Conversations that can be concurrently processed under a particular CPA. For example, the back-end process might only support a limited number of concurrent Conversations. If a request for a new conversation is received when the maximum number of conversations allowed under this CPA is already in process, an implementation MAY reject the new Conversation or may enqueue the request until an existing Conversation ends. If no value is given for concurrentConversations, how to handle a request for a new Conversation for which there is no capacity is a local implementation matter.

8.7 PartyInfo element

The general characteristics of the PartyInfo element are discussed in sections 7.2 and 7.2.1 .

The CPA SHALL have one PartyInfo element for each Party to the CPA. The PartyInfo element specifies the Parties' agreed terms for engaging in a the Business Process defined by the Process-Specification Document referenced by the CPA. If a CPP has more than one PartyInfo element, the appropriate PartyInfo element SHALL be selected from each CPP when composing a CPA.

In the CPA, there SHALL be one PartyId element under each PartyInfo element. The value of this element is the same as the value of the PartyId element in the ebXML Messaging Service specification [MSSPEC]. One PartyId element SHALL be used within a To or From header element of an ebXML Message.

8.7.1 ProcessSpecification element

The ProcessSpecification element identifies the business process that the two Parties have agreed to perform. There MAY be one or more ProcessSpecification elements in a CPA. See the discussion in Section 7.2.4.

8.8 ds:Signature element

A CPA Document MAY be digitally signed by one or more of the Parties as a means of ensuring its integrity as well as a means of expressing the agreement just as a corporate officer's signature would do for a paper Document. If signatures are being used to digitally sign an ebXML CPA or CPP Document, then it is strongly RECOMMENDED that [XMLDSIG] be used to digitally sign the Document. The ds:Signature element is the root of a subtree of elements that MAY be used for signing the CPP. The syntax is:

<ds:Signature>...</ds:Signature>

The content of this element and any subelements are defined by the XML Digital Signature specification.

NOTE: Software for creation of CPPs and CPAs MAY recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature creation itself is a cryptographic process that is outside the scope of this specification.

8.8.1 Persistent Digital Signature

If [XMLDSIG] is used to sign an ebXML CPP or CPA, the process defined in this section of the specification SHALL be used.

8.8.1.1 Signature Generation

1) Create a SignedInfo element, a child element of ds:signature. SignedInfo SHALL have child elements SignatureMethod, CanonicalizationMethod, and Reference as prescribed by [XMLDSIG].

2) Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms specified in SignedInfo as specified in [XMLDSIG].

3) Construct the Signature element that includes the SignedInfo, KeyInfo (RECOMMENDED), and SignatureValue elements as specified in [XMLDSIG].
4) Include the namespace qualified Signature element in the Document just signed, following the last PartyInfo element.

8.8.1.2 ds:SignedInfo element

The ds:SignedInfo element SHALL be comprised of zero or one ds:CanonicalizationMethod element, the ds:SignatureMethod element, and one or more ds:Reference elements.

8.8.1.3 Ds:CanonicalizationMethod element

The ds:CanonicalizationMethod element is defined as OPTIONAL in [XMLDSIG], meaning that the element need not appear in an instance of a ds:SignedInfo element. The default canonicalization method that is applied to the data to be signed is [XMLC14N] in the absence of a ds:Canonicalization element that specifies otherwise. This default SHALL also serve as the default canonicalization method for the ebXML CPP and CPA Documents.
8.8.1.4 ds:SignatureMethod element

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The RECOMMENDED value for the Algorithm attribute is:

http://www.w3.org/2000/02/xmldsig#sha1
This RECOMMENDED value SHALL be supported by all compliant ebXML CPP or CPA software implementations.

8.8.1.5 ds:Reference element

The ds:Reference element for the CPP or CPA Document SHALL have an URI attribute value of "" to provide for the signature to be applied to the Document that contains the ds:Signature element (the CPA or CPP Document). The ds:Reference element for the CPP or CPA Document MAY include a Type attribute that has a value of:

"http://www.w3.org/2000/02/xmldsig#Object"

in accordance with [XMLDSIG]. This attribute is purely informative. It MAY be omitted. Implementations of software designed to author or process an ebXML CPA or CPP Document SHALL be prepared to handle either case. The ds:Reference element MAY include the optional id attribute.

8.8.1.6 ds:Transform element

The ds:Reference element for the CPA or CPP Document SHALL include a child ds:Transform element that excludes the containing ds:Signature element and all its descendants.

8.8.1.7 s:Xpath element

The ds:Transform element SHALL include a child ds:XPath element that has a value of:

/descendant-or-self::node()[not(ancestor-or-self::ds:Signature[@id='S1'])]

NOTE: When digitally signing a CPA, it is RECOMMENDED that each Party sign the Document in accordance with the process described above. The first Party that signs the CPA will sign only the CPA contents, excluding their own signature. The second party signs over the contents of the CPA as well as the Signature element that contains the first Party's signature. It MAY be necessary that a notary sign over both signatures so as to provide for cryptographic closure.
8.9 Comment element

The CollaborationProtocolAgreement element MAY contain zero or more Comment elements. See section 7.5 for details of the syntax of the Comment element.

8.10 Security Considerations for the CPA

Authentication is bi-directional if each Party has to authenticate to the other during a given message exchange. The alternative is that the client authenticates to the server but not vice-versa. In most cases, the choice is determined by other factors. If SSL Ver. 3 is specified for encryption, authentication is always bi-directional.

It should be understood that in a CPA in which each Party can act as either a server or a client for different BusinessTtransactions, the security definitions must enable each Party to authenticate to the other, though not necessarily in the same Message exchange.

Security at the document-exchange level applies to all Messages in both directions for Business Transactions for which security is enabled.

8.11 Composing a CPA from Two CPPs

This section discusses normative issues in composing a CPA from two CPPs. See also Appendix F, "Composing a CPA from Two CPPs (Non-Normative)".

8.11.1 ID Attribute Duplication

In composing a CPA from two CPPs, there is a hazard that ID attributes from the two CPPs might have duplicate values. When a CPA is composed from two CPPs, duplicate ID attribute values SHALL be tested for. If a duplicate ID attribute value is present, one of the duplicates shall be given a new value and the corresponding IDREF attribute values SHALL be corrected.

8.12 Modifying Parameters of the Process Specification Document Based on Information in the CPA

A Process-Specification Document contains a number of parameters, expressed as XML attributes. An example is the security attributes that are counterparts of the attributes of the CPA Characteristics element. The values of these attributes can be considered to be default values or recommendations. When a CPA is created, the Parties MAY decide to accept the recommendations in the Process-Specification Document or they MAY agree on values of these parameters that better reflect their needs.

When a CPA is used to configure a run-time system, choices specified in the CPA MUST always assume precedence over choices specified in the referenced Process-Specification Document. In particular, all choices expressed in a CPA’s Characteristics and Packaging elements MUST be implemented as agreed to by the Parties. These choices MUST override the default values expressed in the Process-Specification Document. The process of installing the information from the CPA and Process-Specification Document MUST verify that all of the resulting choices are mutually consistent and MUST signal an error if they are not.

NOTE: There are several ways of overriding the information in the Process-Specification Document by information from the CPA. For example:

· A separate copy of the Process-Specification document can be created by the CPA composition tool. The tool can then directly modify the Process-Specification Document with information from the CPA. One advantage of this method is that the override process is performed entirely by the CPA composition tool. A second advantage is that with a separate copy of the Process-Specification Document associated with the particular CPA, there is no exposure to modifications of the Process-Specification Document between the time that the CPA is created and the time it is installed in the Parties' systems.

· A CPA installation tool can dynamically override parameters in the Process-Specification Document with information from the corresponding parameters from the CPA at the time the CPA and Process-Specification Document are installed in the Parties' systems. This eliminates the need to create a separate copy of the Process-Specification Document. One disadvantage is that it requires the two Parties to use the same or compatible CPA installation tools in their systems. A second disadvantage is that it requires testing that theProcess-Specification Document has not been altered between CPA composition and CPA installation.

· Other possible methods might be based on XSLT transformations of the parameter information in the CPA and/or the Process-Specification Document.

9 References

Some references listed below specify functions for which specific XML definitions are provided in the CPP and CPA. Other specifications are referred to in this specification in the sense that they are represented by keywords for which the Parties to the CPA may obtain plug-ins or write custom support software but do not require specific XML element sets in the CPP and CPA.

In a few cases, the only available specification for a function is a proprietary specification. These are indicated by notes within the citations below.

[BPMSPEC] ebXML Business Process Specification Schema specification, http://www.ebxml.org.

[DIGENV] Digital Envelope, RSA Laboratories, http://www.rsasecurity.com/rsalabs/. NOTE: At this time, the only available specification for digital envelope appears to be the RSA Laboratories specification.

[EBXMLCC] ebXML Core Components Specification, http://www.ebxml.org.

[EBXMLGLOSS] ebXML Glossary, http://www.ebxml.org.

[FTP] File Transfer Protocol (FTP), Internet Engineering Task Force RFC 959.

[HTMLENC] HTML ver. 4.0 specification, World Wide WebConsortium,

http://www.w3.org/TR/html4/. See section 5.3, Character References.

[HTTP] Hypertext Transfer Protocol, Internet Engineering Task Force RFC2616.

[IPSEC] IP Security Document Roadmap, Internet Engineering Task Force RFC 2411.

[ISO6523] Structure for the Identification of Organizations and Organization Parts, International Standards Organization ISO-6523.

[MIME] MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies. Internet Engineering Task Force RFC 1521.

[MSSPEC] ebXML Messaging Service Specification, http://www.ebxml.org
[REGREP] ebXML Registry and Repository Specification, http://www.ebxml.org

[RFC822] Standard for the Format of ARPA Internet Text Messages, Internet Engineering Task Force RFC 822.

[RFC2015] MIME Security with Pretty Good Privacy, M. Elkins, Internet Engineering Task Force, RFC 2015.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task Force RFC 2119.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax; T. Berners-Lee, R. Fielding, L. Masinter - August 1998

[S/MIME] S/MIME Version 3 Message Specification, Internet Engineering Task Force RFC 2633.

[S2ML] Security Services Markup Language, http://s2ml.org/
[SMTP] Simple Mail Transfer Protocol, Internet Engineering Task Force RFC 821.

[SSL] Secure Sockets Layer, Netscape Communications Corp. http://developer.netscape.com.

NOTE: At this time, it appears that the Netscape specification is the only available specification of SSL. Work is in progress in IETF on "Transport Layer Security", which is intended as a replacement for SSL.

[TECHARCH] ebXML Technical Architecture Specification, http://www.ebxml.org.

[XAML] Transaction Authority Markup Language, http://xaml.org/

[XLINK] XML Linking Language, http://www.w3.org/TR/xlink/

[XML] Extensible Markup Language (XML), World Wide Web Consortium,

http://www.w3.org.

[XMLC14N] Canonical XML, Ver. 1.0, http://www.w3.org/TR/XML-C14N/

[XMLDSIG] XML Signature Syntax and Processing, Worldwide Web Consortium, http://www.w3.org/TR/xmldsig-core/
 [XMLNS] Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Jan. 1999, http://www.w3.org/TR/REC-xml-names/.

[XMLSCHEMA-2] XML Schema Datatypes Specification,

http://www.w3.org/TR/xmlschema-2/

10 Disclaimer

The views and specification expressed in this Document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

Contact Information

 Martin W. Sachs (Team Leader)

 IBM T. J. Watson Research Center

 P.O.B. 704

 Yorktown Hts, NY 10598

 USA

 Phone: 914-784-7287

 email: mwsachs@us.ibm.com

 Chris Ferris

 XML Technology Development

 Sun Microsystems, Inc

 One Network Drive

 Burlington, Ma 01824-0903

 USA

 781-442-3063

 email: chris.ferris@east.sun.com
 Dale W. Moberg

 Sterling Commerce

 4600 Lakehurst Ct.

 Dublin, OH 43016

 USA

 Phone: 614-793-5015

 email: dale_moberg@stercomm.com

Copyright Statement

Copyright © ebXML 2000. All Rights Reserved.

 This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

 This document and the information contained herein is provided on an "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix A Example of CPP Document (Non-normative)

This example is out of date and will be replaced for QR phase 2.

<?xml version = "1.0"?>

<!DOCTYPE CollaborationProtocolProfile SYSTEM "cppml%2cv0.23.dtd">

<!--Generated by XML Authority.-->

<CollaborationProtocolProfile id = "id"

xmlns="http://www.ebxml.org/namespaces/tradePartner"

xmlns:bpm = "http://www /namespaces/businessProcess"

xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"

xmlns:xlink = "http://www.w3.org/1999/xlink">

<!--(Party , (CollaborationProtocol | bpm:ProcessSpecification | bpm:BinaryCollaboration | bpm:BusinessTransactionActivity)+ , ds:Signature?)-->

<Party partyId = "N01">

<!--(PartyId+ , PartyDetails , Role+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)-->

<PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>

<PartyId type = "uriReference">urn:www.example.com</PartyId>

<PartyDetails xlink:type="simple" xlink:href="http://example2.com/example.com"/>

 <CollaborationRole roleId="N07" certId="N03">

 <CollaborationProtocol name = "Buy Sell" version = "1.0"

 xlink:type = "locator"

 xlink:href = "http://www.example.com/services/purchasing.xml"/>

 <Role name = "buyer" certId = "N03" xlink:href="http://www.example.com/services/purchasing.xml"/>

<!--(+)-->

 <ServiceBinding name="MyShopper" channelId="N04"/>

 </CollaborationRole>

<CollaborationRole roleId="N12" certId="N03">

<!--(+)-->

</CollaborationRole>

<Certificate certId = "N03">

<!--(ds:KeyInfo)-->

<ds:KeyInfo>REFERENCE [XMLDSIG]</ds:KeyInfo>

</Certificate>

<DeliveryChannel channelId = "N04"

transportId = "N05" docExchangeId = "N06">

<!--(Characteristics , ServiceBinding+)-->

<Characteristics nonrepudiationOfOrigin = "true" nonrepudiationOfReceipt = "true" secureTransport = "true" confidentiality = "true" authenticated = "true" authorized = "true"/>

</DeliveryChannel>

<Transport transportId = "N05">

<!--(Protocol , Endpoint+ , TransportTimeout? , TransportSecurity?)-->

<Protocol version = "1.1">HTTP</Protocol>

<Endpoint uri = "http://example.com/servlet/ebxmlhandler" type = "request"/>

<TransportSecurity>

<!--(Protocol , CertificateRef?)-->

<Protocol version = "3.0">SSL</Protocol>

<CertificateRef certId = "N03"/>

</TransportSecurity>

</Transport>

<DocExchange docExchangeId = "N06">

<!--(ebXMLBinding)-->

<ebXMLBinding version = "0.9">

<!--(MessageEncoding? , ReliableMessaging , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)-->

<MessageEncoding version = "base64" packagingType = "need to discuss">only text</MessageEncoding>

<ReliableMessaging deliverySemantics = "BestEffort" idempotency = "false">

<!--(Timeout , Retries , RetryInterval)?-->

<Timeout>30</Timeout>

<Retries>5</Retries>

<RetryInterval>60</RetryInterval>

</ReliableMessaging>

<NonRepudiation>

<!--(Protocol , HashFunction , EncryptionAlgorithm , SignatureAlgorithm , CertificateRef)-->

<Protocol version = "2.0">S/MIME</Protocol>

<HashFunction>sha1</HashFunction>

<SignatureAlgorithm>rsa</SignatureAlgorithm>

<CertificateRef certId = "N03"/>

</NonRepudiation>

<DigitalEnvelope>

<!--(Protocol , EncryptionAlgorithm , CertificateRef)-->

<Protocol version = "2.0">S/MIME</Protocol>

<EncryptionAlgorithm>rsa</EncryptionAlgorithm>

<CertificateRef certId = "N03"/>

</DigitalEnvelope>

<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd" version = "0.7a">http://www.s2ml.org/s2ml/</NamespaceSupported>

</ebXMLBinding>

</DocExchange>

</Party>

<ds:Signature>any combination of text and elements</ds:Signature>

</CollaborationProtocolProfile>

Appendix B Example of CPA Document (Non-normative)
This example is out of date and will be replaced for QR phase 2.

<?xml version = "1.0"?>

<!DOCTYPE CollaborationProtocolAgreement SYSTEM "cppml%2cv0.23.dtd">

<!--Generated by XML Authority.-->

<CollaborationProtocolAgreement id = "N01"

xmlns="http://www.ebxml.org/namespaces/tradePartner"

xmlns:bpm = "http://www.ebxml.org/namespaces/businessProcess"

xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"

xmlns:xlink = "http://www.w3.org/1999/xlink">

<!--(CPAType? , Status , Start , Duration , ConversationConstraints? , Party+ , (CollaborationProtocol | bpm:BinaryCollaboration | bpm:BusinessTransactionActivity | bpm:ProcessSpecification)+ , ds:Signature?)-->

<CPAType>

<!--(Protocol , Type)-->

<Protocol version = "1.1">PIP3A4</Protocol>

<Type>RNIF</Type>

</CPAType>

<Status value = "proposed"/>

<Start>1988-04-07T18:39:09</Start>

<Duration>124</Duration>

<ConversationConstraints invocationLimit = "100" concurrentConversations = "4"/>

<Party partyId = "N01">

<!--(PartyId+ , PartyDetails , Role+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)-->

<PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>

<PartyId type = "uriReference">urn:www.example.com</PartyId>

<PartyDetails xlink:type="simple" xlink:href="http://example.com/example2.com"/>

<CollaborationRole roleId="N07" certId="N03">

 <CollaborationProtocol name = "Buy Sell" version = "1.0"

 xlink:type = "locator"

 xlink:href = "http://www.example.com/services/purchasing.xml"/>

 <Role name = "buyer" certId = "N03" xlink:href="http://www.example.com/services/purchasing.xml"/>

<!--(+)-->

 <ServiceBinding name="MyShopper" channelId="N04"/>

 </CollaborationRole>

<Certificate certId = "N03">

<!--(ds:KeyInfo)-->

<ds:KeyInfo>REFERENCE [XMLDSIG]</ds:KeyInfo>

</Certificate>

<DeliveryChannel channelId = "N04" transportId = "N05" docExchangeId = "N06">

<!--(Characteristics , ServiceBinding+)-->

<Characteristics nonrepudiationOfOrigin = "true" nonrepudiationOfReceipt = "true" secureTransport = "true" confidentiality = "true" authenticated = "true" authorized = "true"/>

</DeliveryChannel>

<Transport transportId = "N05">

<!--(Protocol , Endpoint+ , TransportTimeout? , TransportSecurity?)-->

<Protocol version = "1.1">HTTP</Protocol>

<Endpoint uri = "http://example2.com/servlet/ebxmlhandler" type = "request"/>

<TransportSecurity>

<!--(Protocol , CertificateRef?)-->

<Protocol version = "3.0">SSL</Protocol>

<CertificateRef certId = "N03"/>

</TransportSecurity>

</Transport>

<DocExchange docExchangeId = "N06">

<!--(ebXMLBinding)-->

<ebXMLBinding version = "0.9">

<!--(MessageEncoding? , ReliableMessaging , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)-->

<MessageEncoding version = "base64" packagingType = "need to discuss">only text</MessageEncoding>

<ReliableMessaging deliverySemantics = "BestEffort" idempotency = "false">

<!--(Timeout , Retries , RetryInterval)?-->

<Timeout>30</Timeout>

<Retries>5</Retries>

<RetryInterval>60</RetryInterval>

</ReliableMessaging>

<NonRepudiation>

<!--(Protocol , HashFunction , EncryptionAlgorithm , SignatureAlgorithm , CertificateRef)-->

<Protocol version = "2.0">S/MIME</Protocol>

<HashFunction>sha1</HashFunction>

<SignatureAlgorithm>rsa</SignatureAlgorithm>

<CertificateRef certId = "N03"/>

</NonRepudiation>

<DigitalEnvelope>

<!--(Protocol , EncryptionAlgorithm , CertificateRef)-->

<Protocol version = "2.0">S/MIME</Protocol>

<EncryptionAlgorithm>rsa</EncryptionAlgorithm>

<CertificateRef certId = "N03"/>

</DigitalEnvelope>

<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd" version = "0.7a">http://www.s2ml.org/s2ml/</NamespaceSupported>

</ebXMLBinding>

</DocExchange>

</Party>

<Party partyId = "N01">

<!--(PartyId+ , Role+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)-->

<PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>

<PartyId type = "uriReference">urn:www.example.com</PartyId>

<PartyDetails xlink:type="simple" xlink:href="http://example2.com/example.com"/>

<Role certId = "N03" roleId = "N08" name = "seller">

<!--(ServiceBinding+)-->

<ServiceBinding collaborationId="N09" channelId="N04"/>

</Role>

<CollaborationRole roleId="N07" certId="N03">

 <CollaborationProtocol name = "Buy Sell" version = "1.0"

 xlink:type = "locator"

 xlink:href = "http://www.example.com/services/purchasing.xml"/>

<Role name = "buyer" xlink:href="http://www.example.com/services/purchasing.xml"/>

<!--(+)-->

<ServiceBinding name="MyShopper" channelId="N04"/>

 </CollaborationRole>

<Certificate certId = "N03">

<!--(ds:KeyInfo)-->

<ds:KeyInfo>REFERENCE [XMLDSIG]</ds:KeyInfo>

</Certificate>

<DeliveryChannel channelId = "N04" transportId = "N05" docExchangeId = "N06">

<!--(Characteristics , ServiceBinding+)-->

<Characteristics nonrepudiationOfOrigin = "true" nonrepudiationOfReceipt = "true" secureTransport = "true" confidentiality = "true" authenticated = "true" authorized = "true"/>

</DeliveryChannel>

<Transport transportId = "N05">

<!--(Protocol , Endpoint+ , TransportTimeout? , TransportSecurity?)-->

<Protocol version = "1.1">HTTP</Protocol>

<Endpoint uri = "http://example.com/servlet/ebxmlhandler" type = "request"/>

<TransportSecurity>

<!--(Protocol , CertificateRef?)-->

<Protocol version = "3.0">SSL</Protocol>

<CertificateRef certId = "N03"/>

</TransportSecurity>

</Transport>

<DocExchange docExchangeId = "N06">

<!--(ebXMLBinding)-->

<ebXMLBinding version = "0.9">

<!--(MessageEncoding? , ReliableMessaging , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)-->

<MessageEncoding version = "base64" packagingType = "need to discuss">only text</MessageEncoding>

<ReliableMessaging deliverySemantics = "BestEffort" idempotency = "false">

<!--(Timeout , Retries , RetryInterval)?-->

<Timeout>30</Timeout>

<Retries>5</Retries>

<RetryInterval>60</RetryInterval>

</ReliableMessaging>

<NonRepudiation>

<!--(Protocol , HashFunction , EncryptionAlgorithm , SignatureAlgorithm , CertificateRef)-->

<Protocol version = "2.0">S/MIME</Protocol>

<HashFunction>sha1</HashFunction>

<SignatureAlgorithm>rsa</SignatureAlgorithm>

<CertificateRef certId = "N03"/>

</NonRepudiation>

<DigitalEnvelope>

<!--(Protocol , EncryptionAlgorithm , CertificateRef)-->

<Protocol version = "2.0">S/MIME</Protocol>

<EncryptionAlgorithm>rsa</EncryptionAlgorithm>

<CertificateRef certId = "N03"/>

</DigitalEnvelope>

<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd" version = "0.7a">http://www.s2ml.org/s2ml/</NamespaceSupported>

</ebXMLBinding>

</DocExchange>

</Party>

<CollaborationProtocol version = "1.0" id = "N07" xlink:type = "locator" xlink:href = "http://www.example.com/services/purchasing.xml">Buy and Sell

</CollaborationProtocol>

<ds:Signature>any combination of text and elements</ds:Signature>

</CollaborationProtocolAgreement>

Appendix C DTD Corresponding to Complete CPP/CPA Definition (Normative)

This DTD is out of date and will be replaced for QR Phase 2.

<?xml version='1.0' encoding='UTF-8' ?>

<!--Generated by XML Authority-->

<!ELEMENT CollaborationProtocolAgreement (CPAType? , Status , Start , End , ConversationConstraints? , PartyInfo* , ds:Signature+ , Comment*)>

<!ATTLIST CollaborationProtocolAgreement id CDATA #IMPLIED >

<!ELEMENT CollaborationProtocolProfile (PartyInfo+ , ds:Signature? , Comment*)>

<!ELEMENT ReceivingProtocol (#PCDATA)>

<!ATTLIST ReceivingProtocol version CDATA #IMPLIED

 e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT SendingProtocol (#PCDATA)>

<!ATTLIST SendingProtocol version CDATA #IMPLIED

 e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT Protocol (#PCDATA)>

<!ATTLIST Protocol e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT CollaborationRole (ProcessSpecification+ , Role , CertificateRef? , ServiceBinding+)>

<!ATTLIST CollaborationRole id ID #REQUIRED >

<!ELEMENT PartyInfo (PartyId+ , PartyRef , CollaborationRole+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)>

<!ELEMENT PartyId (#PCDATA)>

<!ATTLIST PartyId type CDATA #IMPLIED

 e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT PartyRef EMPTY>

<!ATTLIST PartyRef xlink:type (simple) #FIXED 'simple'

 xlink:href CDATA #REQUIRED >

<!ELEMENT DeliveryChannel (Characteristics)>

<!ATTLIST DeliveryChannel channelId ID #REQUIRED

 transportId IDREF #REQUIRED

 docExchangeId IDREF #IMPLIED >

<!ELEMENT Transport (SendingProtocol , ReceivingProtocol , Endpoint+ , TransportSecurity?)>

<!ATTLIST Transport transportId ID #REQUIRED >

<!ELEMENT Endpoint EMPTY>

<!ATTLIST Endpoint uri CDATA #REQUIRED

 type (login | request | response | error | allPurpose) 'allPurpose'

 a-dtype NMTOKENS 'uri uri' >

<!ELEMENT Retries (#PCDATA)>

<!ATTLIST Retries e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT RetryInterval (#PCDATA)>

<!ATTLIST RetryInterval e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT TransportSecurity (Protocol , CertificateRef)>

<!ELEMENT Certificate (ds:KeyInfo)>

<!ATTLIST Certificate certId ID #REQUIRED >

<!ELEMENT DocExchange (ebXMLBinding)>

<!ATTLIST DocExchange docExchangeId ID #IMPLIED >

<!ELEMENT ReliableMessaging (Retries , RetryInterval)?>

<!ATTLIST ReliableMessaging deliverySemantics (OnceAndOnlyOnce | BestEffort) #REQUIRED

 idempotency CDATA #REQUIRED

 persistDuration CDATA #REQUIRED

 a-dtype NMTOKENS 'idempotency boolean'

 e-dtype NMTOKEN #FIXED 'timeDuration' >

<!ELEMENT NonRepudiation (Protocol , HashFunction , SignatureAlgorithm , CertificateRef)>

<!ELEMENT HashFunction (#PCDATA)>

<!ATTLIST HashFunction e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT EncryptionAlgorithm (#PCDATA)>

<!ATTLIST EncryptionAlgorithm e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT SignatureAlgorithm (#PCDATA)>

<!ATTLIST SignatureAlgorithm e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT DigitalEnvelope (Protocol , EncryptionAlgorithm , CertificateRef)>

<!ELEMENT ProcessSpecification (ds:Reference)>

<!ATTLIST ProcessSpecification version CDATA #REQUIRED

 name CDATA #REQUIRED >

<!ELEMENT CertificateRef (#PCDATA)>

<!ATTLIST CertificateRef certId IDREF #IMPLIED

 e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT MessageEncoding (#PCDATA)>

<!ATTLIST MessageEncoding version CDATA #REQUIRED

 packagingType CDATA #IMPLIED

 e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT ebXMLBinding (MessageEncoding? , ReliableMessaging? , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)>

<!ATTLIST ebXMLBinding version CDATA #REQUIRED >

<!ELEMENT ds:KeyInfo EMPTY>

<!ELEMENT ds:Signature EMPTY>

<!ELEMENT NamespaceSupported (#PCDATA)>

<!ATTLIST NamespaceSupported schemaLocation CDATA #IMPLIED

 version CDATA #REQUIRED

 e-dtype NMTOKEN #FIXED 'uri'

 a-dtype NMTOKENS 'schemaLocation uri' >

<!ELEMENT EMPTY>

<!ATTLIST Characteristics nonrepudiationOfOrigin CDATA #IMPLIED

 nonrepudiationOfReceipt CDATA #IMPLIED

 secureTransport CDATA #IMPLIED

 confidentiality CDATA #IMPLIED

 authenticated CDATA #IMPLIED

 authorized CDATA #IMPLIED

 a-dtype NMTOKENS 'nonrepudiationOfOrigin boolean

 nonrepudiationOfReceipt boolean

 secureTransport boolean

 confidentiality boolean

 authenticated boolean

 authorized boolean' >

<!ELEMENT ServiceBinding (Packaging+ , Override*)>

<!ATTLIST ServiceBinding channelId ID REF #REQUIRED

 name CDATA #IMPLIED >

<!ELEMENT CPAType (Protocol , Type)>

<!ELEMENT Status EMPTY>

<!ATTLIST Status value (signed | proposed) #REQUIRED >

<!ELEMENT Start (#PCDATA)>

<!ATTLIST Start e-dtype NMTOKEN #FIXED 'timeInstant' >

<!ELEMENT End (#PCDATA)>

<!ATTLIST End e-dtype NMTOKEN #FIXED 'timeInstant' >

<!ELEMENT Type (#PCDATA)>

<!ATTLIST Type e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT ConversationConstraints EMPTY>

<!ATTLIST ConversationConstraints invocationLimit CDATA #IMPLIED

 concurrentConversations CDATA #IMPLIED

 a-dtype NMTOKENS

 'invocationLimit i4

 concurrentConversations i4' >

<!ELEMENT Override EMPTY>

<!ATTLIST Override action CDATA #REQUIRED

 channelId ID #REQUIRED

 xlink:href CDATA #IMPLIED

 xlink:type (simple) #FIXED 'simple' >

<!ELEMENT Role (#PCDATA)>

<!ATTLIST Role name CDATA #IMPLIED

 xlink:href CDATA #IMPLIED

 xlink:type (simple) #FIXED 'simple' >

<!ELEMENT SecurityRisks (#PCDATA)>

<!ELEMENT SecurityBenefits (#PCDATA)>

<!ELEMENT Packaging (ProcessingCapabilities , SimplePart+ , CompositeList?)+>

<!ELEMENT Comment ANY>

<!ELEMENT Composite (Constituent+)>

<!ATTLIST Composite mimetype CDATA #REQUIRED

 id CDATA #REQUIRED

 mimeparameters CDATA #IMPLIED >

<!ELEMENT Constituent EMPTY>

<!ATTLIST Constituent idref CDATA #REQUIRED >

<!ELEMENT Encapsulation (Constituent)>

<!ATTLIST Encapsulation mimetype CDATA #REQUIRED

 id CDATA #REQUIRED

 mimeparameters CDATA #IMPLIED >

<!ELEMENT CompositeList (Encapsulation | Composite)+>

<!ELEMENT XMLMetaDataInformation EMPTY>

<!ATTLIST XMLMetaDataInformation URI CDATA #IMPLIED

 MetaDataDescriptionType (dtd | xsd) #REQUIRED >

<!ELEMENT MimeHeader EMPTY>

<!ATTLIST MimeHeader HeaderName CDATA #REQUIRED >

<!ELEMENT MimeParameter EMPTY>

<!ATTLIST MimeParameter parameterAttribute CDATA #REQUIRED

 parameterValue CDATA #IMPLIED >

<!ELEMENT SimplePart EMPTY>

<!ATTLIST SimplePart id CDATA #REQUIRED

 mimetype CDATA #REQUIRED >

<!ELEMENT ProcessingCapabilities EMPTY>

<!ATTLIST ProcessingCapabilities parse CDATA #REQUIRED

 generate CDATA #REQUIRED >

<!ELEMENT ds:Reference EMPTY>

Appendix D XML Schema Document Corresponding to Complete CPA Definition (Normative)

This schema is out of date and will be replaced for the second QR cycle.

<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2000/10/XMLSchema-->

<xsd:schema xmlns:xlink = "http://www.w3.org/1999/xlink"

 xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema">

<xsd:import namespace = "http://www.w3.org/1999/xlink" schemaLocation = "http://www.w3.org/1999/xlink"/>

<xsd:import namespace = "http://www.w3.org/2000/09/xmldsig#" schemaLocation = "file:///C:/My%20Documents/ebXML/xmldsig-core-schema.xsd"/>

<xsd:element name = "CollaborationProtocolAgreement">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "CPAType" minOccurs = "0"/>

<xsd:element ref = "Status"/>

<xsd:element ref = "Start"/>

<xsd:element ref = "Duration"/>

<xsd:element ref = "ConversationConstraints" minOccurs = "0"/>

<xsd:element ref = "PartyInfo" minOccurs = "0" maxOccurs = "unbounded"/>

<xsd:element ref = "ds:Signature" minOccurs = "0"/>

<xsd:element ref = "Comment" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "id" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "CollaborationProtocolProfile">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "PartyInfo" maxOccurs = "unbounded"/>

<xsd:element ref = "ds:Signature" minOccurs = "0"/>

<xsd:element ref = "Comment" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ReceivingProtocol">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "version" type = "xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "SendingProtocol">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "version" type = "xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Protocol" type = "xsd:string"/>

<xsd:element name = "CollaborationRole">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ProcessSpecification"/>

<xsd:element ref = "Role"/>

<xsd:element ref = "CertificateRef" minOccurs = "0"/>

<xsd:element ref = "ServiceBinding" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "roleId" use = "required" type = "xsd:ID"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "PartyInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "PartyId" maxOccurs = "unbounded"/>

<xsd:element ref = "PartyRef"/>

<xsd:element ref = "CollaborationRole" maxOccurs = "unbounded"/>

<xsd:element ref = "Certificate" maxOccurs = "unbounded"/>

<xsd:element ref = "DeliveryChannel" maxOccurs = "unbounded"/>

<xsd:element ref = "Transport" maxOccurs = "unbounded"/>

<xsd:element ref = "DocExchange" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "PartyId">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "type" type = "xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "PartyRef">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "xlink:type" use = "fixed" value = "simple">

<xsd:simpleType>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "simple"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "xlink:href" use = "required" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "DeliveryChannel">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Characteristics"/>

</xsd:sequence>

<xsd:attribute name = "channelId" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "transportId" use = "required" type = "xsd:IDREF"/>

<xsd:attribute name = "docExchangeId" type = "xsd:IDREF"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Transport">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "SendingProtocol"/>

<xsd:element ref = "ReceivingProtocol"/>

<xsd:element ref = "Endpoint" maxOccurs = "unbounded"/>

<xsd:element ref = "TransportSecurity" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "transportId" use = "required" type = "xsd:ID"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Endpoint">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "uri" use = "required" type = "xsd:uriReference"/>

<xsd:attribute name = "type" use = "default" value = "allPurpose">

<xsd:simpleType>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "login"/>

<xsd:enumeration value = "request"/>

<xsd:enumeration value = "response"/>

<xsd:enumeration value = "error"/>

<xsd:enumeration value = "allPurpose"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name = "TransportEncoding" type = "xsd:string"/>

<xsd:element name = "Retries" type = "xsd:string"/>

<xsd:element name = "RetryInterval" type = "xsd:timePeriod"/>

<xsd:element name = "TransportSecurity">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Protocol"/>

<xsd:element ref = "CertificateRef" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Certificate">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ds:KeyInfo"/>

</xsd:sequence>

<xsd:attribute name = "certId" use = "required" type = "xsd:ID"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "DocExchange">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ebXMLBinding"/>

</xsd:sequence>

<xsd:attribute name = "docExchangeId" type = "xsd:ID"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ReliableMessaging">

<xsd:complexType>

<xsd:sequence minOccurs = "0">

<xsd:element ref = "Retries"/>

<xsd:element ref = "RetryInterval"/>

</xsd:sequence>

<xsd:attribute name = "deliverySemantics" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "OnceAndOnlyOnce"/>

<xsd:enumeration value = "BestEffort"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "idempotency" use = "required" type = "xsd:boolean"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "NonRepudiation">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Protocol"/>

<xsd:element ref = "HashFunction"/>

<xsd:element ref = "SignatureAlgorithm"/>

<xsd:element ref = "CertificateRef"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "HashFunction" type = "xsd:string"/>

<xsd:element name = "EncryptionAlgorithm" type = "xsd:string"/>

<xsd:element name = "SignatureAlgorithm" type = "xsd:string"/>

<xsd:element name = "DigitalEnvelope">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Protocol"/>

<xsd:element ref = "EncryptionAlgorithm"/>

<xsd:element ref = "CertificateRef"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ProcessSpecification">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ds:Reference"/>

</xsd:sequence>

<xsd:attribute name = "version" use = "required" type = "xsd:string"/>

<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "CertificateRef">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "certId" type = "xsd:IDREF"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "MessageEncoding">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "version" use = "required" type = "xsd:string"/>

<xsd:attribute name = "packagingType" type = "xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ebXMLBinding">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "MessageEncoding" minOccurs = "0"/>

<xsd:element ref = "ReliableMessaging" minOccurs = "0"/>

<xsd:element ref = "NonRepudiation" minOccurs = "0"/>

<xsd:element ref = "DigitalEnvelope" minOccurs = "0"/>

<xsd:element ref = "NamespaceSupported" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "version" use = "required" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ds:KeyInfo">

<xsd:complexType>

<xsd:sequence/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ds:Signature">

<xsd:complexType>

<xsd:sequence/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "NamespaceSupported">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:uriReference">

<xsd:attribute name = "schemaLocation" type = "xsd:uriReference"/>

<xsd:attribute name = "version" use = "required" type = "xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Characteristics">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "nonrepudiationOfOrigin" type = "xsd:boolean"/>

<xsd:attribute name = "nonrepudiationOfReceipt" type = "xsd:boolean"/>

<xsd:attribute name = "secureTransport" type = "xsd:boolean"/>

<xsd:attribute name = "confidentiality" type = "xsd:boolean"/>

<xsd:attribute name = "authenticated" type = "xsd:boolean"/>

<xsd:attribute name = "authorized" type = "xsd:boolean"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ServiceBinding">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Packaging" maxOccurs = "unbounded"/>

<xsd:element ref = "Override" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "channelId" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "name" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "CPAType">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Protocol"/>

<xsd:element ref = "Type"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Status">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "value" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "signed"/>

<xsd:enumeration value = "proposed"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Start" type = "xsd:timeInstant"/>

<xsd:element name = "Duration" type = "xsd:timePeriod"/>

<xsd:element name = "Type" type = "xsd:string"/>

<xsd:element name = "ConversationConstraints">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "invocationLimit" type = "xsd:int"/>

<xsd:attribute name = "concurrentConversations" type = "xsd:int"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Override">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "action" type = "xsd:string"/>

<xsd:attribute name = "channelId" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "xlink:href" type = "xsd:string"/>

<xsd:attribute name = "xlink:type" use = "fixed" value = "simple">

<xsd:simpleType>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "simple"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Role">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "name" type = "xsd:string"/>

<xsd:attribute name = "xlink:href" type = "xsd:string"/>

<xsd:attribute name = "xlink:type" use = "fixed" value = "simple">

<xsd:simpleType>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "simple"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "SecurityRisks" type = "xsd:string"/>

<xsd:element name = "SecurityBenefits" type = "xsd:string"/>

<xsd:element name = "Packaging">

<xsd:complexType>

<xsd:sequence maxOccurs = "unbounded">

<xsd:element ref = "ProcessingCapabilities"/>

<xsd:element ref = "SimplePart" maxOccurs = "unbounded"/>

<xsd:element ref = "CompositeList" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Comment">

<xsd:complexType>

<xsd:sequence/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Composite">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Constituent" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "mimetype" use = "required" type = "xsd:string"/>

<xsd:attribute name = "id" use = "required" type = "xsd:string"/>

<xsd:attribute name = "mimeparameters" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Constituent">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "idref" use = "required" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "Encapsulation">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "Constituent"/>

</xsd:sequence>

<xsd:attribute name = "mimetype" use = "required" type = "xsd:string"/>

<xsd:attribute name = "id" use = "required" type = "xsd:string"/>

<xsd:attribute name = "mimeparameters" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "CompositeList">

<xsd:complexType>

<xsd:choice maxOccurs = "unbounded">

<xsd:element ref = "Encapsulation"/>

<xsd:element ref = "Composite"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name = "XMLMetaDataInformation">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "URI" type = "xsd:string"/>

<xsd:attribute name = "MetaDataDescriptionType" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "dtd"/>

<xsd:enumeration value = "xsd"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name = "MimeHeader">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "HeaderName" use = "required" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "MimeParameter">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "parameterAttribute" use = "required" type = "xsd:string"/>

<xsd:attribute name = "parameterValue" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "SimplePart">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "id" use = "required" type = "xsd:string"/>

<xsd:attribute name = "mimetype" use = "required" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ProcessingCapabilities">

<xsd:complexType>

<xsd:sequence/>

<xsd:attribute name = "parse" use = "required" type = "xsd:string"/>

<xsd:attribute name = "generate" use = "required" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ds:Reference">

<xsd:complexType>

<xsd:sequence/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Appendix E Formats of Information in the CPP and CPA (Normative)

This section defines format information that is not defined by the [XML] specification and is not defined in the descriptions of specific elements.

Formats of Character Strings

Protocol and Version Elements

Values of Protocol, Version, and similar elements are flexible. In general, any protocol and version for which the support software is available to both Parties to a CPA may be selected as long as the choice does not require changes to the DTD or schema and therefore a change to this specification.

NOTE: A possible implementation may be based on the use of plug-ins or exits to support the values of these elements.

Alphanumeric Strings

Alphanumeric strings not further defined in this section follow these rules unless otherwise stated in the description of an individual element:

 Values of elements are case insensitive unless otherwise stated.

 Strings which represent file or directory names are case sensitive to ensure that they are acceptable to both UNIX and Windows systems.

Numeric Strings

A numeric string is a signed or unsigned decimal integer in the range imposed by a 32-bit binary number, i.e. -2,147,483,648 to +2,417,483,647. Negative numbers may or may not be permitted in particular elements.

Appendix F Composing a CPA from Two CPPs (Non-Normative)

Overview and Limitations

In this appendix, we discuss the tasks involved in CPA formation from CPPs. The detailed procedures for CPA formation are currently left for implementers. Therefore, no normative specification is provided for algorithms for CPA formation. In this initial section, we provide some background on CPA formation tasks.

There are three basic reasons why we prefer to provide information about the component tasks involved in CPA formation rather than attempt to provide an algorithm for CPA formation:

1. The precise informational inputs to the CPA formation procedure vary.

2. There exist at least two distinct approaches to CPA formation. One useful approach for certain situations involves basing CPA formation from a CPA template; the other approach involves composition from CPPs.

3. The conditions for output of a given CPA given two CPPs can involve different levels and extents of interoperability. In other words, when an optimal solution that satisfies every level of requirement and every other additional constraint does not exist, a Party may propose a CPA that satisfies enough of the requirements for “a good enough” implementation. User input may be solicited to determine what is a good enough implementation, and so may be as varied as there are user configuration options to express preferences. In practice, compromises may be made on security, reliable Messaging, levels of signals and acknowledgements, and other matters in order to find some acceptable means of doing business.

Each of these reasons is elaborated in greater detail in the following sections.

Variability in Inputs

User preferences provide one source of variability in the inputs to the CPA formation process. Let us suppose in this section that each of the Parties has made its CPP available to potential collaborators. Normally one Party will have a desired Collaboration Protocol (defined in a Process-Specification Document) to implement with its intended collaborator. So the information inputs will normally involve a user preference about intended Collaboration Protocols in addition to just the CPPs.
A CPA formation tool may have access to local user information not advertised in the CPP that may contribute to the CPA that is formed. A user may have chosen to only advertise those system capabilities that reflect nondeprecated capabilities. For example, a user may only advertize HTTP and omit FTP, even when capable of using FTP, because of concerns about the scalability of managing user accounts, directories, and passwords for FTP sessions. Despite not advertising a FTP capability, configuration software may use tacit knowledge about its own FTP capability to form a CPA with an intended collaborator who happens to have only a FTP capability for implementing a desired business collaboration. In other words, business interests may, in this case, override the deprecation policy. Both tacit knowledge as well as detailed preference information account for variability in inputs into the CPA formation process.

Different Approaches

When a CPA is formed from a CPA template, it is typically because the capabilities of one of the Parties are limited, and already tacitly known. For example, if a CPA template were implicitly presented to a Web browser for use in an implementation using browser based forms capabilities, then the template maker can assume that the other Party has suitable web capabilities (or is about to download them). Therefore, all that really needs to be done is to supply PartyRef, Certificate, and similar items for substitution into a CPA template. The CPA template will already have all the capabilities of both Parties specified at the various levels, and will have placeholders for values to be supplied by one of the Partners. A simple form might be adequate to gather the needed information and produce a CPA.

Variable Output “Satisficing” Policies

A CPA can support a fully interoperable configuration in which agreement has been reached on all technical levels needed for business collaboration. In such a case, matches in capabilities will have been found in all relevant technical levels.

However, there can be interoperable configurations agreed to in a CPA in which not all aspects of a business collaboration match. Gaps may exist in packaging, security, signaling, reliable Messaging and other areas and yet the systems can still transport the business data, and special means can be employed to handle the exceptions. In such situations, a CPA may reflect configured policies or expressly solicited user permission to ignore some shortcomings in configurations. A system may not be capable of responding in a business collaboration so as to support a recommended ability to supply nonrepudiation of receipt, but might still be acceptable for business reasons. A system might not be able to handle all the processing required to support “multipart/related” processing with a type value of “application/vnd.eb+xml,” and yet still be able to treat the multipart according to “multipart/mixed” handling and allow business collaboration to take place. In fact, short of a failure to be able to transport data and a failure to be able to provide data relevant to the business process, there are few features that might not be temporarily or indefinitely compromised about, given overriding business interests. This situation of “partial interoperability” is to be expected to persist for some time, and so interferes with formulating a “clean” algorithm for deciding on what is sufficient for interoperability.

In summary, the previous considerations indicate that at the present it is at best premature to seek a simple algorithm for CPA formation from CPPs. It is to be expected that as capability characterization and exchange becomes a more refined subject, that advances will be made in characterizing CPA formation and negotiation.

Despite it being too soon to propose a simple algorithm for CPA formation that covers all the above variations, it is currently possible to enumerate the basic tasks involved in matching capabilities within CPPs. This information MAY assist the software implementer in designing a partially automated and partially interactive software system useful for configuring business collaboration so as to arrive at satisfactorily complete levels of interoperability. To understand the context for characterizing the constituent tasks, the general perspective on CPPs and CPAs needs to be briefly recalled.

CPA Formation Component Tasks

Technically viewed, a CPA provides “bindings” between business process (BP) specifications (as defined in the Process-Specification Document) and those services and protocols that are used to implement these BP specifications. The implementation takes place at several levels and involves varied services at these levels. A CPA that arrives at a fully interoperable binding of a BP to its implementing services and protocols can be thought of as arriving at interoperable, application-to-application integration. CPAs may fall short of this goal and still be useful and acceptable to the collaborating Parties. Certainly, if no matching data transport capabilities can be discovered, a CPA would not provide much in the way of interoperable business-to-business integration. Likewise, partial CPAs will leave significant system work to be done before a completely satisfactory application to application level integration is realized. Even so, partial integration may be sufficient to allow collaboration, and to enjoy payoffs from increased levels of automation.

In practice, the CPA formation process may produce a complete CPA, a failure result, a gap list that drives a dialog with the user, or perhaps even a CPA that implements partial interoperability “good enough” for the business collaborators. Because both matching capabilities and interoperability can be matters of degree, the constituent tasks are finding the matches in capabilities at different levels and for different services. We next proceed to characterize many of these constituent tasks.

CPA Formation from CPPs: Enumeration of Tasks

To simplify discussion, assume in the following that we are viewing the tasks faced by a software agent when:

1. an intended collaborator is known and the collaborator's CPP has been retrieved,

2. the business process between us and our intended collaborator has been selected,

3. the specific role that our software agent is to play in the BP is known, and

4. the capabilities that are to be advertised in our CPP are known.

For vividness, we will suppose that our example agent wishes to play the role of supplier and seeks to find one of its current customers to begin a Purchase Order business process in which the intended player plays a complementary role. For simplicity, we assume that the information about capabilities is restricted to what is available in our agent’s CPP and in the CPP of its intended collaborator.

In general, the constituent tasks consist of finding “matches” between our capabilities and our intended collaborator’s at the various levels of the protocol stacks and with respect to the services supplied at these various levels.

The first task to be considered is certainly the most basic: finding that our intended collaborator and ourselves have matching role capabilities.

Matching Roles

Our agent has its role already selected in the BP. So it now begins to check the Roles in its collaborator’s CPP. The first element to examine is the PartyInfo element that contains a subtree of elements called CollaborationRole. This set is searched to discover a role that complements the role of our agent within the BP that we have chosen. For simple binary collaboration cases, it is typically sufficient to find our intended collaborator’s CollaborationRole set contains ProcessSpecification elements that we intend to implement and where the role is not identical to our role. For more general collaborations, we would need to know the list of roles available within the process, and keep track that for each of the collaborators, the roles chosen instantiate those that have been specified within the Process-Specification Document. Collaborations involving more than two roles are not discussed further.

Matching Transport

We now have available a list of candidate CollaborationRole elements with the desired ProcessSpecification element(Purchase Ordering) and where our intended collaborator plays the buyer role. For simplicity, we shall suppose just one CollaborationRole element meets these conditions within each of the relevant CPPs and not discuss iterating over lists. (Within these remarks, where repetition is possible, we will frame the discussion by assuming that just one element is present.)

Matching transport first means matching the SendingProtocol capabilities of our intended collaborator with the ReceivingProtocol capabilities found on our side. Perusal of the CPP DTD or Schemas will reveal that the ServiceBinding element provides the doorway to the relevant information from each side’s CollaborationRole element with the channelId attribute. This channelId attribute’s value allows us to find DeliveryChannels within each CPP. The DeliveryChannel has a transportId attribute that allows us to find the relevant Transport subtrees.
For example, suppose that our intended buyer has a Tranport entry:

<Transport transportId = "buyerid001">

<SendingProtocol>HTTP</SendingProtocol>

<ReceivingProtocol>

HTTP

</ReceivingProtocol>

<Endpoint uri = "https://www.buyername.com/po-response"

type = "allPurpose"/>

<TransportSecurity>

<Protocol version = "1.0">TLS</Protocol>

<CertificateRef certId = certid001">BuyerName</CertificateRef>

</TransportSecurity>

</Transport>

and our seller has a Transport entry:

<Transport transportId = "sellid001">

<SendingProtocol>HTTP</SendingProtocol>

<ReceivingProtocol>

HTTP

</ReceivingProtocol>

<Endpoint uri = "https://www.sellername.com/pos_here"

type = "allPurpose"/>

<TransportSecurity>

<Protocol version = "1.0">TLS</Protocol>

<CertificateRef certId =”certid002">Sellername</CertificateRef>

</TransportSecurity>

</Transport>

A transport match for requests involves finding the initiator role or buyer has a SendingProtocol that matches one of our ReceivingProtocols. So here, “HTTP” provides a match. A transport match for responses involves finding the responder role or seller has a SendingProtocol that matches one of the buyer’s ReceivingProtocols. So in the above example, “HTTP” again provides a match. When such matches exist, we then have discovered an interoperable solution at the transport level. If not, no CPA will be available, and a high-priority gap has been identified that will need to be remedied by whatever exception handling procedures are in place.

Matching Transport Security

Matches in transport security, such as in the above, will reflect agreement in versions and values of protocols. Software can supply some knowledge here so that if one side has SSL-3 and the other TLS-1, it can guess that security is available by means of a fallback of TLS to SSL.

Matching Document Packaging

Probably one of the most complex matching problems arises when it comes to finding whether there are matches in Document packaging capabilities. Here both security and other MIME handling capabilities can combine to create complexity for appraising whether full interoperability can be attained.

Access to the information needed for undertaking this task is found under the ServiceBinding elements, and again we suppose that each side has just one ServiceBinding entry. However, we will initially suppose that two Packaging elements are available to consider under each role. Several quite different ways of thinking about the matching task are available, and several methods for the tasks may be performed when assessing whether a good enough match exists.

To continue our previous purchase-ordering example, we recall that the packaging is the particular combination of body parts, XML instances (headers and payloads), and security encapsulations used in assembling the Message from its data sources. Both requests and responses will have packaging. The most complete specification of packaging, which may not always be needed, would consist of:

1. the buyer asserting what packaging it can generate for its purchase order, and what packaging it can parse for its purchase order response Messages.

2. the seller asserting what packaging it can generate for its purchase order responses and what packaging it can parse for received purchase orders.

Matching by structural comparison would then involve comparing the packaging details of the purchase orders generated by the seller with the purchase orders parsable by the buyer. The comparison would seek to establish that the MIME types of the SimpleParts of corresponding subtrees match and would then proceed to check that the CompositeList matched in MIME types and in sequence of composition.

For example, if each CPP contained the packaging subtrees below, and under the appropriate ServiceBindings, then there would be a straightforward match by structural comparison:

<Packaging>

<ProcessingCapabilities parse = "true" generate = "true"/>

<SimplePart id = "P1" mimetype = "application/vnd.eb+xml"/>

<SimplePart id = "P2" mimetype = "application/po+xml"/>

<CompositeList>

<Composite mimetype = "multipart/related" id = "P3"

 mimeparameters = "type=application/eb+xml">

<Constituent idref = "P1"/>

<Constituent idref = "P2"/>

</Composite>

</CompositeList>

</Packaging>

<Packaging>

<ProcessingCapabilities parse = "true" generate = "true"/>

<SimplePart id = "P11" mimetype = "application/vnd.eb+xml"/>

<SimplePart id = "P12" mimetype = "application/po-ack+xml"/>

<CompositeList>

<Composite mimetype = "multipart/related" id = "P13"

 mimeparameters = "type=application/eb+xml">

<Constituent idref = "P11"/>

<Constituent idref = "P12"/>

</Composite>

</CompositeList>

</Packaging>

However, it is to be expected that over time it may become possible to only assert what packaging is generated within each ServiceBinding for the requester and responder roles. This simplification assumes that each side has knowledge of what MIME types it handles correctly, what encapsulations it handles correctly, and what composition modes it handles correctly. By scanning the packaging specifications against its lists of internal capabilities, it can then look up whether other side's generated packaging scheme is one it can process and accept it under those conditions. Knowing what generated packaging style was produced by the other side could enable the software agent to propose a packaging scheme using only the MIME types and packaging styles used in the incoming Message. Such a packaging scheme would be likely to be acceptable to the other side when included within a proposed CPA. Over time, and as proposal and negotiation conventions get established, it is to be expected that the methods used for determining a match in packaging capabilities will move away from structural comparison to simpler methods, using more economical representations.

In the near term, however, more explicit specifications and the more elaborate structural comparisons will be most likely to give trustworthy matching assessments.

Matching Document-Level Security

Although the matching task for Document-level security is a subtask of the Packaging-matching task, it is useful to discuss some specifics tied to the three major Document-level security approaches found in [S/MIME], OpenPGP[RFC2015], and XMLDsig[XMLDSIG].

XMLDsig matching capability can be inferred from Document-matching capabilities when the use of ebXML TRP-style[MSSPEC] packaging is present. However, there are other sources that should be checked to confirm this match. The DeliveryChannel has a subtree under the DocExchange element that, for the ebXMLBinding element, has a NameSpacesSupported element. XMLDsig capability should be found there. Likewise, a detailed check on this match should examine the information under NonRepudiation to check for compatibility in hash functions and algorithms.

The existence of several radically different approaches to Document-level security, together with the fact that it is unusual at present for a given Party to commit to more than one form of such security, means that there can be basic failures to match security frameworks. Therefore, no match in capabilities that supports full interoperability at all levels. For the moment, we assume that Document-level security matches will require both sides able to handle the same security composites (multipart/signed using S/MIME, for example.)

However, suppose that there are matches at the transport and transport layer security levels, but that the two sides have failures at the Document security level because one side makes use of PGP signatures while the other uses S/MIME. Does this mean that no CPA can be proposed? That is not necessarily the case.

Both S/MIME and OpenPGP permit signatures to be packaged within “multipart/signed” composites. In such a case, it may be possible to extract the data and arrive at a partial implementation that falls short with respect to nonrepudiation. While neither side could check the other's signatures, it might still be possible to have confidential document transmission and transport-level authentication for the business data. Eventually CPA-formation software may be created that is able to identify these exceptional situations and “salvage” a proposed CPA with downgraded security features. Whether the other side would accept such a proposed CPA would, naturally, involve what their preferences are with respect to initiating a business collaboration and sacrificing some security features. CPA-formation software may eventually be capable of these adaptations, but it is to be expected that human assistance will be required for such situations in the near term.

Of course, an implementation may simply decide to terminate looking for a CPA when a match fails in any crucial factor for an interoperable implementation. At the very least, the users should be warned that the only CPAs that can be proposed will be missing security or other normally desirable features or features recommended by the BP’s Process Specification.

Other Considerations

Handling Preferences among Multiple Matching Capabilities.

1. Tiebreaker on preferences needed.

2. Ranking: can convert ranks to numerical order, add values, lowest value wins, and tie values goes to that one of the lowest value that reflects the BP responder values.

Appendix G Mapping of CPA Constructs to ebXML Message Header (Normative)

This appendix will describe how specific constructs defined in the CPA are mapped to the ebXML Message header defined by the ebXML Messaging Service Specification [MSSPEC].

The contents of this appendix will be supplied for the next QR cycle.

� EMBED FLW3Presentation ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

74
2
cpa-cpp-spec-0.91-QR.doc

[image: image7.wmf]Figure 3, Overview of Collaboration-Protocol Agreements(CPA)

CPA ID

Party’s information

- Party A

- Party B

Transport Protocol

Transport Security P

DocExchange

Protocol

Link to Process-

Specification Doc.

Time out/Retry

-etc.

CPP

For

Party-A

CPP

For

Party-B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA has

arrived.

3

Agree-

ment

 on

CPA has

arrived.

4 Start Business activities with each other

[image: image8.jpg]Creating A Single Global Electronic Market

[image: image9.wmf]Delivery

Channel

DC1

Transport

T1

Doc.Exch.

D1

Delivery

Channel

DC2

Transport

T2

Doc.Exch.

D2

Delivery

Channel

DC3

Transport

T3

Doc.Exch.

ID=D3

[image: image10.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

Repository

Repository

Company B

(Buyer,Server)

Company A

(Seller,Server)

CPP(A)

CPP(B)

CPP(X)

CPP(Y)

CPP(Z)

CPP(A)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

1. Any company may register its

CPPs

to a Repository.

2. Company B discovers trading

partner A (Seller) by searching

CPPs

in the Repository and

downloads CPP(A) to Company-B’s

server.

3. Company B makes CPA(A,B) and

sends CPA(A,B) to Company A .

4. Companies A and B negotiate and

store identical copies of the

completed CPA as a document in

both servers. This process is done

manually or automatically.

5. Companies A and B configure

their runtime systems with the

information in the CPA.

6. Do Business (e.g. submit purchase

orders)

2.

6.

5.

5.

3.

4.

1.

1.

[image: image11.wmf]Figure 2: Overview of Collaboration-Protocol Profiles(CPP)

What Business

Capabilities

It

“CAN DO”

When conducting

Business Process

with other parties

Party A

Party’s information

- Party name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

(Example of CPP)

Describe

Build

_1044384948.ppt

Figure 2: Overview of Collaboration-Protocol Profiles(CPP)

What Business Capabilities

It

“CAN DO”

When conducting Business Process with other parties

Party A

Party’s information

- Party name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process- Specification document

Time out/Retry

-etc.

CPP

(Example of CPP)

Describe

Build

_1044385002.ppt

Figure 3, Overview of Collaboration-Protocol Agreements(CPA)

CPA ID

Party’s information

- Party A

- Party B

Transport Protocol

Transport Security P

DocExchange Protocol

Link to Process- Specification Doc.

Time out/Retry

-etc.

CPP

For

Party-A

CPP

For

Party-B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-ment on CPA has arrived.

3

Agree-ment on CPA has arrived.

4 Start Business activities with each other

_1044385078.ppt

Figure 4: Overview of Working Architecture of CPP/CPA with Repository

Repository

Company B

(Buyer,Server)

Company A

(Seller,Server)

CPP(A)

CPP(B)

CPP(X)

CPP(Y)

CPP(Z)

CPP(A)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

1. Any company may register its CPPs to a Repository.

2. Company B discovers trading partner A (Seller) by searching CPPs in the Repository and downloads CPP(A) to Company-B’s server.

3. Company B makes CPA(A,B) and sends CPA(A,B) to Company A .

4. Companies A and B negotiate and store identical copies of the completed CPA as a document in both servers. This process is done manually or automatically.

5. Companies A and B configure their runtime systems with the information in the CPA.

6. Do Business (e.g. submit purchase orders)

2.

6.

5.

5.

3.

4.

1.

1.

_1043540813.unknown

_1043772418.ppt

Figure 1: Structure of CPP & Business Process Specification in Repository

Repository

Business collaboration protocol

<PartyInfo PartyId=“N01”>

 <ProcessSpecification xlink:href=“http://

<PartyInfo PartyId=“N02”>

 <ProcessSpecification xlink:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business collaboration protocol

