
[image: image1.wmf]Delivery Channel

ID=DC1

Transport

ID=T1

Doc.Exch.

ID=D1

Delivery Channel

ID=DC2

Transport

ID=T2

Doc.Exch.

ID=D2

Delivery Channel

ID=DC3

Transport

ID=T3

Doc.Exch.

ID=D3


Collaboration-Protocol Profile and Agreement Specification

Version 0.29

ebXML Trading-Partners team 
01/24/01 5:04 PM
1 Status of this Document

This document specifies an ebXML WORK IN PROGRESS for the eBusiness community. 

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version: 


http://www.ebxml.org/project_teams/trade_partner/private/cpa-cpp-spec-0.29-qr.doc

Latest version:

http://www.ebxml.org/project_teams/trade_partner/private/cpa-cpp-spec-0.29-qr.doc

Previous version:


http:// http://www.ebxml.org/project_teams/trade_partner/private/cpa-cpp-spec-0.0.doc

2 ebXML participants

The authors wish to recognize the following for their significant participation to the development of this document. 

Marty Sachs, IBM

Chris Ferris, Sun

Scott Hinkelman, IBM

David Burdett, CommerceOne

Dale Moberg, Sterling Commerce

Henry Lowe, OMG

Daniel Ling, VCHEQ

Stefano Pogliani, Sun

Maryann Hondo, IBM

Karsten Riemer, Sun

Tony Weida, Edifecs

Ravi Kacker, eXcelon Corp.

Yukinori Saito, ECOM

Sam Hunting, ECOM XML

John Ibbotson, IBM

3 Table of Contents

11
Status of this Document

2
ebXML participants
2
3
Table of Contents
3
4
Introduction
5
4.1 Summary of Contents of Document
5
4.2 Document Conventions
5
4.3 Audience
6
4.4 Assumptions
6
4.5 Related Documents
6
5
Design Objectives
7
6
System Overview
8
6.1 What This Specification Does
8
6.2 How the CPA  Works
8
6.3 Where the CPA May Be Implemented
9
6.4 Definition and Scope
9
7
CPP Definition
10
7.1 CPP Structure
10
7.2 Party Element
11
7.2.1 partyId attribute
12
7.2.2 PartyId element
13
7.2.3 PartyDetails element
13
7.2.4 Role element
14
7.2.5 Service Binding
15
7.2.6 Override element
16
7.2.7 Certificate element
16
7.2.8 DeliveryChannel element
17
7.2.9 Characteristics element
18
7.2.10 Transport element
19
7.2.11 Communication Protocol and Version
20
7.2.12 Communication Addressing
20
7.2.13 Transport Encoding
20
7.2.14 Transport Protocols
21
7.2.15 Transport Security
22
7.3 DocExchange element
24
7.3.1 docExchangeId attribute
24
7.3.2 ebXMLBinding element
24
7.3.3 version attribute
25
7.3.4 MessageEncoding element
25
7.3.5 ReliableMessaging element
25
7.3.6 NonRepudiation element
26
7.3.7 DigitalEnvelope element
27
7.3.8 Namespaces Supported
27
7.4 Collaboration Protocol
28
7.4.1 id attribute
28
7.4.2 version attribute
28
7.4.3 xlink:type attribute
28
7.4.4 xlink:href attribute
28
7.5 Digital Signature
29
8
CPA Definition
30
8.1 CPA Structure
30
8.2 CollaborationProtocolAgreement element
31
8.2.1 CPAType element
31
8.2.2 CPA Status
31
8.2.3 CPA Lifetime
32
8.2.4 ConversationConstraints element
33
8.2.5 Party element
33
8.2.6 CollaborationProtocol element
34
8.2.7 Signature element
34
8.3 Security Considerations for the CPA
34
9
References
35
9.1 Normative References
35
9.2 Non-normative References
36
10
Disclaimer
37
Contact Information
38
Copyright Statement
39
Appendix 1  Example of CPP Document
40
Appendix 2 Example of CPA Document
42
Appendix 3 DTD Corresponding to Complete CPP/CPA  Definition
46
Appendix 4 XML Schema Document Corresponding to Complete CPA Definition
49
Appendix 5 Mapping of CPA Constructs to ebXML Message Header
50


4 Introduction

4.1 Summary of Contents of Document

As defined in the ebXML Business-Process Model [BPMSPEC], a business partner is an entity that engages in business transactions with another business partner(s). Each partner's capabilities (both commercial/business and technical) to engage in electronic message exchanges with other partners MAY be described by a document called a Trading-Partner Profile.  The agreed interactions between two Partners MAY be documented in a document called a Trading-Partner Agreement (TPA). A TPA MAY be created by computing the intersection of the two Partners' TPPs.

The message-exchange capabilities of a Party MAY be described by a Collaboration-Protocol Profile (CPP) within the TPP.  The message-exchange agreement between two Parties MAY be described by a Collaboration-Protocol Agreement (CPA) within the TPA.  Included in the CPP and CPA are details of transport, messaging, and the collaboration protocol definitions that the two Parties either can or will perform when engaging in a specified electronic business process.

The collaboration protocol is defined by an [XML] document that conforms to the ebXML Business Process Specification Schema specification [BPMSPEC].  The CPP and CPA include references to this collaboration protocol document.

This specification is a draft standard for trial implementation. This specification contains the detailed definitions of the Collaboration Protocol Profile (CPP) and the Collaboration Protocol Agreement (CPA).  

This specification is organized as follows:

· Section 5 defines the objectives of this specification. 

· Section 6 provides a system overview. 

· Section 7 contains the definition of the CPP, identifying the structure and all necessary fields.

· Section 8 contains the definition of the CPA.

· The appendices include the complete XML CPP and CPA definitions the DTD, an XML Schema document equivalent to the DTD, and the mapping of CPA constructs to fields in the ebXML Header document [MSSPEC].

4.2 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [Glossary]. Terms listed in Bold Italics represent the element and/or attribute content of the XML CPP or CPA definitions. 

In this specification, indented paragraphs beginning with "NOTE:" provide non-normative explanations or suggestions that are not required by the standard.

References to external documents are represented with BLOCK text enclosed in brackets (i.e. [RFC2396]. The references are listed in Sect.  9, "References".

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC 2119]. 

NOTE:  Vendors should carefully consider support of "optional" tags, i.e. those with cardinalities (0 or 1) or (0 or more).  A given Party may use these tags in some CPPs or CPAs and not in others. Some of these tags define parameters or operating modes and should be implemented by all vendors.  It may be appropriate to implement optional tags that represent major run-time functions, such as various alternative communication protocols or security functions, by means of plug-ins so that a given Party may acquire only the needed functions rather than having to install all of them.

4.3 Audience

The principal target audience for this specification is designers and developers of middleware and application software that is to be used for conducting electronic business.

4.4 Assumptions

It is expected that the reader has an understanding of XML and is familiar with the concepts of electronic business (e-business).

4.5  Related Documents

Other documents provide detailed definitions of some of the components of xxxx and of their inter-relationship. They include ebXML Specifications on the following topics:

· ebXML Technical Architecture [TECHARCH]

· ebXML Message Service Specification [MSSPEC]

· ebXML Business Process Specification Schema [BPMSPEC]

See Section 9 for the complete list of references.

5 Design Objectives

The objective of this specification is to ensure interoperability between two Parties even though they may procure application software and run-time support software from different vendors. The CPA defines the way two Parties will interact in performing the chosen business process.  Both Parties MAY use identical copies of the CPA to configure their run-time systems. This assures that they are compatibly configured to exchange messages whether or not they have obtained their run-time systems from the same vendor.

It is an objective of this specification that a CPA SHALL be capable of being composed by intersecting the respective CPPs of the Parties involved.  The resulting CPA contains only those elements that are in common, or compatible, between the two parties. Variable parameters, such as timeout values, are then negotiated between the two Parties.  The design of the CPP and CPA schemata facilitates this composition/negotiation process. However, the composition and negotatiation processes themselves are outside the scope of this specification.

6 System Overview

6.1 What This Specification Does

Exchange of information between two Parties requires each Party to know the other Party's supported Collaborative Processes and the technology details about how the other sends and receives messages and, in some cases, for the two Parties to reach agreement on some of the details.  

The way each Party can exchange information, in the context of a Collaborative Process, can be described by a Collaboration-Protocol Profile (CPP) that MAY be stored in a repository such as is provided by the ebXML Registry.  The agreement between the Parties can be expressed as a Collaboration-Protocol Agreement (CPA).
This specification defines the markup language vocabulary for creating electronic CPPs and CPAs.  CPPs and CPAs are [XML] documents.  In the appendices of this specification are a sample CPP, a sample CPA, the DTD, and the corresponding XML Schema document.

The CPP describes the capabilities of an individual Party. Agreements (CPAs) between two Parties describe the capabilites they have agreed to use to perform a particular business process. Like the trading-partner agreements used in Electronic Data Interchange (EDI), these CPAs define the "information technology terms and conditions" that enable business documents to be electronically interchanged between partners.  However, these CPAs are not paper documents.  Rather, they are electronic documents, written in XML, which can be processed by computers at the partners' sites in order to set up and then execute the desired business information exchanges.

In general, the parties to a CPA can have both client and server characteristics.  A client requests services and a server provides services to the Party requesting services.  In some applications, one Party only requests services and one Party only provides services.  These applications have some resemblance to traditional client-server applications.  In other applications, each Party may request services of the other.

6.2 How the CPA  Works

A CPA describes all the valid visible, and hence enforceable, interactions between the parties and is independent of the internal business processes of each Party. Each Party builds its own internal business process to satisfy these external CPAs and interface them to the rest of its business processes. However, the internal business processes are in general not visible to other parties (unless desired by the service providers themselves). The intent is to provide a high-level specification that can be easily comprehended by humans and yet is precise enough for enforcement by computers.

The CPA and the business process definition that it references define a conversation between the two parties. The conversation represents a single unit of business as defined by the business process.  The conversation consists of one or more business transactions, each of which is a request message from one Party and a response message from the other Party.  The CPA defines, among other things, the request and response messages for each business transaction and the order in which the business transactions are required to occur.  When the business process is performed between the collaborating parties, the CPA is instantiated by the run-time system as a new conversation for each unit of business.

6.3 Where the CPA May Be Implemented

Conceptually, the CPA is implemented by a business to business (B2B) server at each Party's site.  The B2B server provides the code for the services needed to support the CPA including the middleware which supports communication with the other Party, execution of the functions specified in the CPA, interfacing to each Party's back-end processes, and logging the interactions between the parties for purposes such as audit and recovery.  The middleware might support the concept of a long-running conversation as the embodiment of a single unit of business between the parties. This specification uses the term "registration" to denote the process of setting up the CPA for use at each Party's site, i.e. recording the static information in a local database and generating the necessary code to support the CPA.

NOTE:  It is possible to provide a graphic CPP/CPA-authoring tool that understands both the semantics of the CPP/CPA and the XML syntax.  Equally important, the definitions in this specification make it feasible to automatically generate, at each Party's site, the code needed to execute the CPA, enforce its rules, and invoke the application-specific programs.

6.4 Definition and Scope

This specification defines and explains the contents of the CPP and CPA XML documents. Its scope is limited to these definitions.  It does not define how to compose a CPA from two CPPs nor does it define anything related to run-time support for the CPP and CPA.  It does include some non-normative suggestions and recommendations regarding run-time support where these notes server to clarify the CPP and CPA definitions.

7 CPP Definition

A CPP defines the capabilities of a Party to engage in electronic business with other parties. These capabilities include both "technology" capabilities such as supported communication and messaging protocols, and "business capabilities" in terms of what business processes it supports. 

This section defines and discusses the details in the CPP in terms of the individual XML tags. The discussion is illustrated with some XML fragments and reference should be made to the DTD and sample CPP in the appendices.

The CollaborationProtocol, DocExchange, and Transport elements of the CPP describe the processing of a unit of business (conversation).  These elements form a layered structure somewhat analogous to a layered communication model. The following descriptions include both what is defined in the CPP and the corresponding run-time processing.

Collaboration-Protocol layer - The Collaboration-Protocol layer defines the heart of the business agreement between the Parties: the services (business transactions) which Parties to the CPA can request of each other and transition rules that determine the order of requests.  The Collaboration-Protocol layer is the interface between the CPA-defined business transactions and the business-application functions that actually perform the business transactions.

Delivery Channels - A delivery channel consists of one document-exchange definition and one transport definition.  Several delivery channels can be defined in one CPP.

Document-Exchange layer - The Document Exchange layer accepts a business document from the Collaboration-Protocol layer, encrypts it if specified, adds a digital signature for nonrepudiation if specified, and passes it to the transport layer for transmission to the other Party. The options selected for the Document Exchange layer depend on those selected for the Transport layer.  For example, if message security is desired and the selected transport protocol does not provide message encryption then it must be specified at the Document-Exchange layer.

Transport layer - The transport layer is responsible for message delivery using the selected transport protocol.  The selected protocol affects the choices selected for the Document-Exchange layer.  For example, some transport-layer protocols may provide encryption and authentication while others have no such facility. 

It should be understood that the functional layers encompassed by the CPP have no understanding of the contents of the payload of the business documents.

7.1 CPP Structure 

This section describes the overall structure of the CPP. Unless otherwise noted, CPP fields MUST be in the order shown here. Subsequent sections describe each of the elements in greater detail.

Following is the overall structure of the CPP, expressed in XML.  Each of these elements will be discussed in detail in subsequent sections.

<CollaborationProtocolProfile id = "id"


xmlns="http://www.ebxml.org/namespaces/tradePartner"

xmlns:bpm="http://www.ebxml.org/namespaces/businessProcess"


xmlns:ds="http://www.w3.org/2000/09/xmldsig#"


xmlns:xlink="http://www.w3.org/1999/xlink">

<Party partyId = "N01">

       ...

</Party>

<!--CollaborationProtocol:  one or more-->

<CollaborationProtocol version="1.0" id="N07" 

xlink:type="locator" 

xlink:href="http://www.ebxml.org/services/purchasing.xml">

Buy and Sell


</CollaborationProtocol>


<ds:Signature>

...

</ds:Signature>

</CollaborationProtocolProfile>
The CollaborationProtocolProfile element is the root element of the CPP XML document. It has a REQUIRED id attribute that is of type [XML] ID that supplies an unique identifer for the document.  The REQUIRED [XML] Namespace [XMLNS] declarations for the basic document are as follows:

· The default namespace: xmlns="http://www.ebxml.org/namespaces/tradePartner"

· the Busines Process Model namespace: xmlns:bpm="http://www.ebxml.org/namespaces/businessProcess", 

· XML Digital Signature namespace: xmlns:ds="http://www.w3.org/2000/09/xmldsig#", 

· and the XLINK namespace: xmlns:xlink="http://www.w3.org/1999/xlink".

The CollaborationProtocolProfile element SHALL consist of the following REQUIRED child elements:

· a single Party element that identifies the organization whose capabilities are described by the CPPone or more CollaborationProtocol elements that provide the links to the XML document that identifies a different business process that the Party is capable of performing.

In addition, a CPP document MAY be digitally signed so as to provide for a means of ensuring that the document has not been altered (integrity) and to provide for a means of authenticating the author of the document. A digitally signed CPP SHALL be signed using technology that conforms to the joint W3C/IETF XML Digital Signature specification [XMLDSIG]. Therefore, the CollaborationProtocolProfile element MAY include one or more ds:Signature elements that contain the digital signature that signs the CPP document.  
7.2 Party Element

The Party element identifies the organization whose capabilities are described in this CPP and includes all the details about this Party.  Each of its subelements is discussed later. The overall structure for  the Party element is as follows:

<Party partyId = "N01">


<PartyId>  <!--one or more-->



...

</PartyId>

<PartyDetails>


...

</PartyDetails>

 
<Role>   <!--one or more-->



...

</Role>

 
<Certificate>  <!--one or more-->



...

</Certificate>

<DeliveryChannel>  <!--one or more-->


...

</DeliveryChannel>

<Transport>  <!--one or more-->


...

</Transport>  

<DocExchange>  <!--one or more-->


...

</DocExchange>

</Party>

The Party element consists of the following child elements:

· One or more PartyId elements that provide a logical identifier for the organization. A REQUIRED PartyDetails element that provides a pointer to more information about the Party.

· One or more Role elements that identify the roles that this Party can play in the context of a collaboration protocol.

· One or more Certificate elements that identify the certificates used by this Party in security functions.

· One or more DeliveryChannel elements that define the characteristics of each delivery channel that the Party can use to receive messages.  It includes both the transport level (e.g. HTTP) and the messaging protocol (e.g. ebXML Message Service).

· One or more Transport elements that define the characteristics of the transport protocol(s) that the Party can support to receive messages.

· One or more DocExchange elements that define the message-exchange characteristics, such as the message-exchange protocol of each message-exchange service that the Party can support.

7.2.1 partyId attribute

The Party element has a REQUIRED partyId attribute that is an ID attribute by which this tag can be referenced from elsewhere within the CPP document using either an IDREF or an Xpath/Xpointer reference, or externally as an Xpath/Xpointer reference. For example, the following Xpath/Xpointer syntax:

//Party[@partyId = 'N01']

would find the Party element with a partyId value of 'N01'. 

7.2.2 PartyId element

The REQUIRED PartyId element provides a logical identifier that MAY be used to logically identify the Party. Additional PartyId elements MAY be present so as to provide for alternative logical identifiers for the Party. This permits a large organization, for example, to have different identifiers for different parts of the organization. The value of the PartyId tag is any string that provides a unique identifier.

The PartyId element has a single attribute: type that has a string value. 

If the type attribute is present, then it provides a scope or namespace for the content of the PartyId element. 

If the type attribute is not present, the content of the PartyId element MUST be an URI that conforms to [RFC2396]. It is RECOMMENDED that the value of the type attribute be an URN that defines a namespace for the value of the PartyId element. Typically, the URN would be registered as a well-known directory of organization identifiers.
This element is the same as the PartyId element in the ebXML Messaging Service specification [MSSPEC]. One PartyId element SHALL be used within a To or From header element of an ebXML Message.

<PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>

<PartyId type = "uriReference">urn:www.example.com</PartyId>

The above example illustrates two URI references.  

The first example is the URN for the Party's DUNS number, assuming that Dun and Bradstreet has registered an URN for DUNS numbers with the Internet Assigned Numbers Authority. The last field is the DUNS number of the organization.

The second example shows an arbitrary URN.  This might be an URN that the Party has registered with the Internet Assigned Numbers Authority (IANA) to identify itself directly.

7.2.3 PartyDetails element

<PartyDetails xlink:type="simple"

 
xlink:href="http://example2.com/example.com"/>
The PartyDetails element provides a link to additional information about the Party. Typically, this would be the URL from which the information can be obtained.  The information might be at the Party's web site or in a publicly accessible repository such as an ebXML repository, a UDDI repository, or an LDAP directory. Information available at that URL MAY include contact names, addresses, and phone numbers, and perhaps more information about the business processes that it supports. It is not within the scope of this specification to define the format of the information at that URL. 

The PartyDetails element is an [XLINK] simple link. It has two attributes as follows:

· a REQUIRED xlink:type attribute

· a REQUIRED xlink:href attribute

7.2.3.1 xlink:type attribute

The REQUIRED xlink:type attribute SHALL have a value of 'simple'. This identifies the element as being an [XLINK] simple link.

7.2.3.2 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is an URI that conforms to [RFC2396] that identifies the location of the external information about the Party.

7.2.4 Role element

<Role roleId="N11" name="buyer" certId="N03">

    <!-- primary binding with "default" DeliveryChannel associated -->

    <ServiceBinding collaborationId="N09" channelId="N02">

        <!-- override "default" deliveryChannel  for selected message(s)-->

        <Override action="Order" channelId="N05"/>

    </ServiceBinding>

    <!-- either this is the primary binding for another

         business process OR it is the first alternate binding for

         one which precedes it with the same collaborationId -->

    <ServiceBinding collaborationId="N09" channelId="N04">

        <Override action="Order" channelId="N05"/>

    </ServiceBinding>

</Role>

The Role element associates the Party with a specific role that is defined in the collaboration protocol.  Generally, the collaboration protocol description is defined in terms of roles such as "buyer" and "seller".  The association between a specific Party and the role(s) it is capable of fulfilling is defined in both the CPP and CPA documents.  In a CPP, the Role element identifies which role the Party is capable of playing in each collaboration protocol referenced by the CPP.

The Role element SHALL have one or more ServiceBinding child elements. Each child ServiceBinding element provides a binding of the role to a collaboration protocol that defines said role and a technical binding of a default DeliveryChannel for the message traffic that is to be received by the Party within the context of the role in the identified collaboration protocol.

When there are more than one ServiceBinding child elements of a Role, if more than one of the ServiceBinding elements reference the same collaboration protocol, then the order of the ServiceBinding elements SHALL be treated as signifying the Party's preference starting with highest and working towards lowest.

The Role element has the following attributes:

· A certId attribute,

· a REQUIRED roleId attribute,

· a REQUIRED name attribute

7.2.4.1 certId attribute

The certId attribute is an IDREF that associates the Role identified in the name attribute with a Certificate defined elsewhere in the CPP document. 

7.2.4.2 roleId attribute

The roleId attribute is an ID attribute by which this Role element can be referenced from elsewhere in the CPP. 

7.2.4.3 name attribute

The REQUIRED name attribute is a string that gives a name to the Role. Its value is taken from the one of the following sources in the business process [BPMSPEC] that is referenced by the CollaborationProtocol depending upon which element is the "root" (highest order) of the business process referenced:

· initiator attribute of the binary-collaboration element

· responder attribute of the binary-collaboration element

· from attribute of the business-transaction-activity element

· to attribute of the business-transaction-activity element

· from attribute of the collaboration-activity element

· to attribute of the collaboration-activity element

· name attribute of the business-partner-role element

7.2.5 Service Binding

<ServiceBinding name="SomeProcess" 

collaborationId="X01" channelId="X03"/>

The ServiceBinding element provides an internal link to the CollaborationProtocol and DeliveryChannel elements elsewhere in the same document for the purpose of:

· associating the parent Role element with the collaboration protocol identified by the value of collaborationId attribute, and 

· associating a default DeliveryChannel for all of the message traffic that is to be sent to the Party for the identified collaboration protocol.

The ServiceBinding element MAY have zero or more Override child elements. The Override element SHALL specify a DeliveryChannel that is different than that specified for the parent ServiceBinding element for selected messages that are to be received by the Party in the context of the collaboration protocol that is associated with the parent ServiceBinding element.

The ServiceBinding element has three attributes as follows:

· a REQUIRED name attribute

· a REQUIRED collaborationId attribute

· a REQUIRED channelId attribute

7.2.5.1 name attribute

The name attribute is a string value that SHALL be used as the value of the Service element in an ebXML Message Header document. 

7.2.5.2 collaborationId attribute

The collaborationId attribute is an [XML] IDREF that identifies the CollaborationProtocol element that references the collaboration protocol that is associated with the parent Role element in the context of this ServiceBinding.

7.2.5.3 channelId attribute

The channelId attribute is an [XML] IDREF that identifies the DeliveryChannel that SHALL provide a default technical binding for all of the message traffic that is received for the collaboration protocol that is referenced by the CollaborationProtocol element that is identified by the collaborationId attribute.

7.2.6 Override element

The Override element provides a Party with the ability to map, or bind, a different DeliveryChannel to selected messages that are to be received by the Party within the context of the collaboration process that is associated with the parent ServiceBinding element.

The Override element has two attributes as follows:

· a message attribute

· a channelId attribute

7.2.6.1 message attribute

The message attribute is a string that identifies the message that is to be associated with the DeliveryChannel that is identified by the channelId attribute.

7.2.6.2 channelId attribute

The channelId attribute is an [XML] IDREF that identifies the DeliveryChannel element that is to be associated with the message that is identified by the message attribute.

7.2.7 Certificate element

<Certificate certId = "N03">


<ds:KeyInfo>. . .</ds:KeyInfo>

</Certificate>

The Certificate element defines certificate information for use in this CPP. One or more certificates may be defined for use in the various security functions in the CPP. 

The Certificate element has a single REQUIRED attribute: certId. The Certificate element has a single child element: ds:KeyInfo.

7.2.7.1 certId attribute

The certId attribute is an ID attribute.  Its is referred to in a CertificateRef element, using an IDREF attribute, where a certificate is specified elsewhere in the CPP. For example:


<CertificateRef certId = "N03"/>

7.2.7.2 ds:KeyInfo element

The ds:KeyInfo element defines the certificate information. The content of this element and any subelements are defined by the XML Digital Signature specification [XMLDSIG].
NOTE: Software for creation of CPPs and CPAs may recognized the ds:KeyInfo and insert the subelement structure necessary to define the certificate.
7.2.8 DeliveryChannel element

[image: image2.jpg]Creating A Single Global Electronic Market



A delivery channel is a combination of a transport layer definition and a document-exchange definition that describes the Party's message-receiving characteristics. The CPP can contain one or more delivery-channel definitions, one or more transport sections, and one or more document-exchange sections. Each delivery channel can refer to any combination of a delivery channel and a transport definition.  The same delivery channel or the same transport definition can be referred to by more than one delivery channel.  Two delivery channels may use the same transport protocol and the same document-exchange protocol and differ only in details such as communication addresses or security definitions. The following figure illustrates three delivery channels.

The delivery channels are named DC1, DC2, and DC3.  Each delivery channel contains one transport definition and one document-exchange definition.  Each transport definition and each document-exchange definition also has a name as shown.

A specific delivery channel may be associated with each business transaction or message definition. 

Following is the delivery channel syntax.

<DeliveryChannel channelId="N04" transportId="N05" docExchangeId="N06">


<Characteristics 

nonrepudiationOfOrigin = "true" 

nonrepudiationOfReceipt = "true" 

secureTransport = "true" 

confidentiality = "true" 

authenticated = "true" 

authorized = "true"/>

</DeliveryChannel>

Each DeliveryChannel element identifies one Transport element and one DocExchange element that make up a single delivery channel definition. Each DeliveryChannel is uniquely identified by a channelId attribute that is an [XML] ID. This allows it to be referenced from elsewhere within the CPP document via an IDREF. 

In addition to the channelId attribute, the DeliveryChannel element has two additional attributes as follows:

· A REQUIRED transportId attribute

· A REQUIRED docExchangeId attribute

7.2.8.1 transportId attribute

The transportId attribute is an [XML] IDREF that identifies the Transport element that defines the transport characteristics of the delivery channel. It MUST have a value that is equal to the value of a transportId attribute of a Transport element elsewhere within the CPP document.

7.2.8.2 docExchangeId attribute

The docExchangeId attribute is an [XML] IDREF that identifies the DocExchange element that defines the document exchange characteristics of the delivery channel. It MUST have a value that is equal to the value of a docExchangeId attribute of a DocExchange element elsewhere within the CPP document.

7.2.9 Characteristics element

The Characteristics element describes the security characteristics provided by the delivery channel. The Characteristics element has six attributes as follows:

· a nonrepudiationOfOrigin attribute

· a nonrepudiationOfReceipt attribute

· a secureTransport attribute

· a confidentiality attribute

· an authenticated attribute

· an authorized attribute

Each of the attributes is a boolean with possible values of "true" or "false". 

7.2.9.1 nonrepudiationOfOrigin attribute

The nonrepudiationOfOrigin attribute is a boolean with a possible range of values of "true" and "false". If the value is "true" then the delivery channel REQUIRES the message to be digitally signed by the certificate of the Party that sent the message. 

7.2.9.2 nonrepudiationOfReceipt attribute

The nonrepudiationOfReceipt attribute is a boolean with a possible range of values of "true" and "false". If the value is "true" then the delivery channel REQUIRES that the message be acknowledged by a digitally signed message, signed by the certificate of the Party that received the message, that includes the digest of the message being acknowledged.

7.2.9.3 secureTransport attribute

The secureTransport attribute is a boolean with a possible range of values of "true" and "false". If the value is "true" then it indicates that the delivery channel uses a secure transport protocol such as [SSL] or [IPSEC].

7.2.9.4 confidentiality attribute

The confidentiality attribute is a boolean with a possible range of values of "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the message be encrypted in a persistent manner. It MUST be encrypted above the level of the transport and delivered, encrypted, to the application. 

7.2.9.5 authenticated attribute

The authenticated attribute is a boolean with a possible range of values of "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the sender of the message be authenticated before delivery to the application. 
7.2.9.6 . authorized attribute

The authorized attribute is a boolean with a possible range of values of "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the sender of the message be authorized before delivery to the application.

7.2.10 Transport element

The Transport element of the CPP defines the Party's capabilities with regard to communication protocol, encoding, and transport security information. 

If multiple delivery channels are defined in a CPP, one or more Transport elements MAY be defined. 

The overall structure of the Transport element is as follows:

<Transport transportId = "N05">


<!--protocols are HTTP, SMTP, and FTP-->


<Protocol version = "1.1">HTTP</Protocol>


<!--one or more endpoints-->


<Endpoint uri="http://example.com/servlet/ebxmlhandler" 

type = "request"/>


<!--TransportEncoding may appear 0 or 1 times-->


<TransportEncoding>base64</TransportEncoding>


<TransportSecurity>  <!--0 or 1 times-->



<Protocol version = "3.0">SSL</Protocol>



<CertificateRef certId = "N03"/>


</TransportSecurity>

</Transport>

The Transport element has a single REQUIRED transportId attribute that provides a unique identifier for each Transport element, which MAY be referred to by the transportId attribute in a DeliveryChannel element elsewhere within the CPP document.

7.2.11 Communication Protocol and Version

Supported communication protocols are HTTP, SMTP, and FTP. The CPP can specify as many protocols as the Party is capable of.  The Version attribute identifies the specific version of the protocol.  

7.2.12 Communication Addressing

The uri attribute of the Endpoint element specifies the Party's communication addressing information. One or more Endpoint elements SHALL be provided for each Transport element in order to provide different addresses for different purposes. The value of the uri attribute is an URI that contains the electronic address of the Party in the form required for the selected protocol.  The value of the uri attribute SHALL conform to the syntax for expressing URIs as defined in [RFC2396]. The example above illustrates an endpoint for the HTTP protocol.  This address is contacted for creating an information-delivery channel. 

The type attribute identifies the purpose of this endpoint. Permissible values are "login", "request", "response", and "error". The type attribute MAY be omitted.  If it is omitted, its value defaults to "allPurpose".

7.2.13 Transport Encoding

The TransportEncoding element specifies how the transport layer encodes messages for transmission. Possible values of this element are [MIME], BASE64 [MIME], and HTMLEncoding.

The default value for encoding depends on the transport protocol.  If the transport protocol performs encoding with no options, TransportEncoding may be omitted. Otherwise, the default value is no encoding.  If the value of <TransportEncoding> is not consistent with the transport protocol, it shall be ignored.

NOTE: For proper encoding behavior in the transport level, the characteristics of the data which determine the encoding requirements should be passed from the business application process to the document-exchange level.  The document-exchange level should pass this information to the transport level along with an indication of whether the document-exchange level has performed encoding.

NOTE: The TransportEncoding element is a child of the Transport element since the encoding choices may be transport-protocol-dependent.

7.2.14 Transport Protocols

In the section that follow, we discuss the specific details of each supported transport protocol. 

7.2.14.1 HTTP

Hypertext Transfer Protocol or [HTTP]. For HTTP, the address is an URI that SHALL conform to [RFC2396].  Depending on the application, there MAY be one or more endpoints, whose use is determined by the application.

Following is an example of an HTTP endpoint address:

http://example.com/servlet/ebxmlhandler 

Following are the endpoint types for HTTP.

· login identifies the endpoint used for the initial connection between client and server.

· request identifies the endpoint used for receiving requests.

· response identifies the endpoint used for receiving asynchronous response messages.

· error defines the endpoint used for receiving business-level error messages.

The request and response endpoints MAY be dynamically overridden for a particular request or asynchronous response by application-specified URIs exchanged in business documents exchanged under the CPA.

For a synchronous response, the response endpoint is ignored if present. A synchronous response is always returned on the existing connection, i.e. to the URI that is identified as the source of the connection.

7.2.14.2 SMTP

[SMTP] is Simple Mail Transfer Protocol. For use with this standard, Multipurpose Internet Mail Extensions [MIME] must be supported. The MIME media type used by the SMTP transport layer is Application with a sub-type of octet-stream.

For SMTP the communication address is the fully qualified mail address of the destination party as defined by [RFC822]. 
Following is an example of an SMTP endpoint:

mailto:ebxmlhandler@example.com
SMTP with MIME automatically encodes or decodes the document as required, on a link by link basis, and presents the decoded document to the destination document-exchange function. If the application design is such that the choices in the DocumentExchange element and the CollaborationProtocol element are intended to be independent of the choice of transport protocol, it is permissible to specify a MessageEncoding element. 

NOTE:  The SMTP mail transfer agent encodes binary (i.e. data that are not 7-bit ASCII) data unless it is aware that the upper level (mail user agent) has already encoded the data.  If the data are encoded in the document-exchange level (MessageEncoding), the information that the data are already encoded SHOULD be passed to the mail user agent.
NOTE: SMTP by itself (without any authentication or encryption) is subject to denial of service and masquerading by unknown parties.  It is strongly suggested that those partners who choose SMTP as their transport layer also choose a suitable means of encryption and authentication either in the document-exchange layer or in the transport layer (S/MIME).

NOTE: SMTP is an asynchronous protocol that does not guarantee a particular quality of service.  A transport-layer acknowledgment (i.e. an SMTP acknowledgment) to the receipt of a mail message constitutes an assertion on the part of the SMTP server that it knows how to deliver the mail message and will attempt to do so at some point in the future. However, the message is not hardened and may never be delivered to the recipient.  Furthermore, the sender will see a transport-layer acknowledgment only from the nearest node. If the message passes through intermediate nodes, SMTP does not provide an end to end acknowledgment.  Therefore receipt of an SMTP acknowledgement does not guarantee that the message will be delivered to the application and failure to receive an SMTP acknowledgment is not evidence that the message was not delivered.  It is recommended that the reliable messaging protocol in the ebXML Messaging Service be used with SMTP.

7.2.14.3 FTP

[FTP] is File Transfer Protocol. 

Since a delivery channel specifies receive characteristics, Each Party sends a message using FTP PUT.  The endpoint specifies the user id and input directory path (for PUTs to this party). An example of an FTP endpoint is:

ftp://userid@server.foo.com

NOTE:  It is assumed that the FTP implementation will automatically set transfer type (binary or ASCII), passive mode if needed, and passive mode control port number if needed.

7.2.15 Transport Security

The TransportSecurity element provides the Party's security specifications for the transport layer of the CPP.  It may be omitted if transport security will not be used for this CPAs composed from this CPP. Unless otherwise specified below, transport security applies to messages in both directions.

Following is the syntax:

<TransportSecurity>


<Protocol version = "3.0">SSL</Protocol>


<CertificateRef certId = "N03"/> <!--Cardinality 0 or 1-->

</TransportSecurity>

The value of the Protocol element can identify any transport security protocol that the Party is prepared to support. The CertificateRef element contains an IDREF attribute that identifies the certificate to be used in this delivery channel by referring to the Certificate element (under Party) that has the matching ID attribute value. The CertificateRef element MAY be omitted if the protocol does not use certificates (e.g. password authentication).

Transport security may be either encryption or authentication.  Both encryption and authentication may be specified in the same CPP, especially if authentication is by userid and password. Authentication verifies the sender of the message.  Encryption prevents the message from being read by unauthorized parties but by itself performs no authentication or nonrepudiation

Examples of encryption protocols are RC2, RC5, RC6, and S/MIME. Only certificate-based encryption is defined.

Authentication may be by password or certificate, depending on the chosen protocol. Password and certificate authentication may be used together. The protocol, protocol version, and certificate reference Examples of protocols are [SSL] and [S/MIME]. A public key certificate must be supplied for each Party (except as specified below). 

Authentication is bi-directional if each Party has to authenticate to the other during a given message exchange.  The alternative is that the client authenticates to the server but not vice-versa.  In most cases, the choice is determined by other factors.  If SSL Ver. 3 is specified for encryption, authentication is always bi-directional.  If the authentication type is PASSWORD, the client authenticates to the server. At the same time, the server may use a certificate to authenticate to the client. If the authentication type is CERTIFICATE, the authentication could be bi-directional or not.  For the purpose of this specification, it is defined as bi-directional unless otherwise specified below. 

The security mode used for the communication that initializes a conversation depends on which security modes are defined in the TransportSecurity element.  If authentication is defined, authentication is used.  Otherwise, encryption is used if defined.  If neither authentication nor encryption is defined, no security is applied to the initial communication. 

7.2.15.1 Specifics for HTTP 

For encryption with HTTP, the protocol is SSL (Secure Socket Layer) Version 2.0 or 3.0, which uses public-key encryption [SSL].  The encryption tags include the certificate parameters.

Authentication of the client to the server may be either by password or by certificate. Certificate authentication is SSL version 3.0. If each party may act as a server at times and a client at other times, the CPA must specify certificates for both parties.

The password algorithm is HTTPAuthentication. The server presents a certificate to the client that authenticates the server.  The client uses that certificate to encrypt the password.  If each party may act as a client at times and as a server at other times, the CPA must specify password authentication and certificate authentication for both parties.

7.3 DocExchange element

The DocExchange element provides information that the Parties must agree on regarding exchange of documents between them. This information includes the message security definition. If multiple DeliveryChannel elements are defined, one or more DocExchange elements MAY be defined. 

Following is the structure of the DocExchange element of the CPP.  Subsequent sections describe each child element in greater detail.

<DocExchange docExchangeId = "N06">


<ebXMLBinding version = "0.92">



<MessageEncoding> <!--cardinality 0 or 1-->



...

</MessageEncoding>



<ReliableMessaging>




...



</ReliableMessaging>



<NonRepudiation>  <!--cardinality 0 or 1-->




...



</NonRepudiation>



<DigitalEnvelope>  <!--cardinality 0 or 1-->




...



</DigitalEnvelope>



<NamespaceSupported> <!-- 1 or more -->




...

</NamespaceSupported>


</ebXMLBinding>

</DocExchange>
The DocExchange element of the CPP defines the properties of the messaging service to be used with CPAs composed from the CPP.

The DocExchange element is comprised of a single ebXMLBinding child element.

7.3.1 docExchangeId attribute

The DocExchange element has a single docExchangeId attribute is an [XML] ID that provides an unique identifier which may be referenced from elsewhere within the CPP document.
7.3.2 ebXMLBinding element

The ebXMLBinding element describes properties specific to the ebXML Message Service [MSSPEC].  The element structure under DocExchange permits the document-exchange section to be extended to other messaging services by adding additional xxxBinding elements that describe the other services. 

The ebXMLBinding element is comprised of the following child elements:

· zero or one MessageEncoding element; specifies how messages are to be encoded by the document-exchange layer.
· zero or one ReliableMessaging element; specifies the characteristics of reliable messaging.
· zero or one NonRepudiation element; specifies the requirements for signing the message.
· zero or one DigitalEnvelope element; specifies the requirements for encryption by the digital-envelope method.
· zero or more NamespaceSupported elements; identifies any namespace extensions supported by the message service implementation.
7.3.3 version attribute

The ebXMLBinding element has a single REQUIRED version attribute that refers to the version of the specification of the messaging service being used.

7.3.4 MessageEncoding element

The MessageEncoding element specifies how the messages are to be encoded by the document-exchange layer for transmission. Encoding choices depend on the properties of the message-exchange protocol specified by the ebXMLBinding element. An example is BASE64 [MIME]. If  the MessageEncoding element is omitted, the default is no document-exchange encoding. Example:

<MessageEncoding>BASE64</MessageEncoding>

7.3.5 ReliableMessaging element

The ReliableMessaging element specifies the properties of reliable message exchange if provided by the selected message-exchange protocol. The following is the element structure:

<ReliableMessaging deliverySemantics="OnceAndOnlyOnce" 

idempotency="false">


<Timeout>30</Timeout> <!--0 or 1 times-->

<!--time in seconds-->


<Retries>5</Retries>  <!--0 or 1 times-->

<RetryInterval>60</RetryInterval> <!--0 or 1 times-->

<!--time in seconds--> 

</ReliableMessaging>

The ReliableMessaging element is comprised of the following child elements:

· a Timeout element,

· a Retries element and,

· a RetryInterval element

The ReliableMessaging element has two attributes as follows:

· a REQUIRED deliverySemantics attribute and

· an idempotency attribute

7.3.5.1 deliverySemantics attribute

The deliverySemantics attribute of the ReliableMessaging element specifies the degree of reliability of message delivery. This attribute is an enumeration of possible values that include the following:

· OnceAndOnlyOnce

· BestEffort

A value of  "OnceAndOnlyOnce" specifies that a message must be delivered exactly once. "BestEffort" specifies that reliable messaging semantics are not to be used.  Other alternatives MAY exist, depending on the characteristics of the message-exchange protocol.

7.3.5.2 idempotency attribute

The idempotency attribute of the ReliableMessaging element specifies whether the Party requires that all messages exchanged be subject to an idempotency test (detection and discard of duplicate messages) in the document exchange layer.  The attribute is a boolean with a range of possible values of "true" and "false". If the value of the attribute is "true", all messages are subject to the test.  If the value is "false", messages are not subject to an idempotency test in the document-exchange layer. Testing for duplicates is based on the message identifier and other information that is carried in the message header.

NOTE: Additional testing for duplicates may take place in the business application based on application information in the messages (e.g. purchase order number).

The idempotency test checks whether a message duplicates a prior message between the same client and server. If the idempotency test is requested, a duplicate message is passed to the recipient with a "duplicate" indication. A "duplicate" indication is also returned to the sender. One of the main purposes of this test is to aid in retry following timeouts and in recovery following node failures.  In these cases, a request is reissued when it is not known whether the original request was received.  If the original request was received, the duplicate is discarded by the server and the server returns the original results to the requester.

If a communication protocol always checks for duplicate messages, the check in the communication protocol overrides any idempotency specifications in the CPA.

7.3.5.3 Timeout, Retries and RetryInterval elements

The Timeout element specifies the length of time (in seconds) that the Party's message service shall wait before retrying sending of the message. The Retries and RetryInterval elements specify the permitted number of retries, and interval between retries (in seconds), of a request following a timeout. The purpose of the RetryInterval element is to improve the likelihood of success on retry be deferring the retry until any temporary conditions that caused the error might correct themselves. 

Each of the three elements may be omitted.  If an element is omitted, its value is a local matter with the Party.  In a CPA, omission of one or more of these elements is subject to agreement by the two parties.

7.3.6 NonRepudiation element

NonRepudiation both proves who sent a message and prevents later repudiation of the contents of the message. NonRepudiation is based on signing the message using XML Digital Signature [XMLDSIG]. The element structure is as follows:

<NonRepudiation>


<Protocol version = "1.0">XMLDSIG</Protocol>


<HashFunction>sha1</HashFunction>





<SignatureAlgorithm>rsa</SignatureAlgorithm>


<CertificateRef certId = "N03"/>

</NonRepudiation>

If  the NonRepudiation element is omitted, the messages are not digitally signed.

The NonRepudiation element is comprised of the following child elements:

· The REQUIRED Protocol element, 

· the REQUIRED HashFunction (e.g. SHA1, MD5) element, 

· the REQUIRED SignatureAlgorithm element, 

· and theREQUIRED Certificate element. 

7.3.6.1 Protocol element

The Protocol element identifies the technology that will be used to digitally sign a message. It has a single REQUIRED version attribute that is a string that identifies the version of the specified technology. An example of the Protocol element follows:

<Protocol version="2000/10/31">http://www.w3.org/2000/09/xmldsig#</Protocol>

7.3.6.2 HashFunction element

The HashFunction element identifies the algorithm that is used to compute the digest of the message being signed.

7.3.6.3 SignatureAlgorithm element

The SignatureAlgorithm element identifies the algorithm that is used to compute the value of the digital signature.

7.3.6.4 CertificateRef element

The CertificateRef element refers to one of the Certificate elements elsewhere within the CPP document, using the certId IDREF attribute.

7.3.7 DigitalEnvelope element

The DigitalEnvelope element [DGTENV]is an encryption procedure in which the message is encrypted by symmetric encryption (shared secret key) and the secret key is sent to the message recipient encrypted with the recipient's public key.  The protocol and version, enryption algorithm, and certificate reference must be provided. The element structure is:

<DigitalEnvelope>

<Protocol version = "2.0">S/MIME</Protocol>

<EncryptionAlgorithm>rsa</EncryptionAlgorithm>


<CertificateRef certId = "N03"/>

</DigitalEnvelope>

7.3.8 Namespaces Supported

The NamespaceSupported element identifies any namespace extensions supported by the messaging service implementation. Examples are Security Services Markup Language [S2ML] and Transaction Authority Markup Language [XAML]. For example, support for the S2ML namespace would be defined as follows:

<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd" 

version = "0.8">http://www.s2ml.org/s2ml</NamespaceSupported>
7.4 Collaboration Protocol

The CollaborationProtocol element provides the link to the collaboration protocol document that defines the interactions between the two Parties.  This document is prepared in accord with the ebXML Business Process Specification Schema specification [BPMSPEC]. The collaboration protocol document MAY be kept in an ebXML Repository.

More than one CollaborationProtocol element MAY be provided in a CPP document so that a Party can indicate its capability for multiple business processes.  The syntax is as follows:

<CollaborationProtocol version="1.0" id="N07" 

xlink:type="locator" 

xlink:href="http://www.ebxml.org/services/purchasing.xml">

Buy and Sell

</CollaborationProtocol>

The CollaborationProtocol element has a string value that MAY be used as a human friendly means of identifying the collaboration protocol. 

The CollaborationProtocol element has the following attributes:

· a REQUIRED id attribute,

· a version attribute,

· a REQUIRED xlink:type attribute

· a REQUIRED xlink:href attribute

7.4.1 id attribute

The id attribute is an [XML] ID that MAY be used to refer to this element from elsewhere within the CPP document. 

7.4.2 version attribute

The CollaborationProtocol element MAY include a version attribute to identify the version of the business process definition that is referenced.
7.4.3 xlink:type attribute

The REQUIRED xlink:type attribute SHALL have a value of 'locator'. This identifies the element as being an [XLINK] locator.

7.4.4 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is an URI that conforms to [RFC2396] that identifies the location of the external information about the collaboration protocol.
7.5 Digital Signature

The CPP MAY be digitally signed using technology that conforms with the XML Digital Signature specification [XMLDSIG]. The syntax is:

<ds:Signature>...</ds:Signature>

The content of this tag and any subelements are defined by the XML Digital Signature specification.  

NOTE: Software for creation of CPPs and CPAs may recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPASignature creation itself is a cryptographic process that is outside the scope of this specification.

8 CPA Definition

A CPA defines the capabilities that two Parties must agree to enable them to engage in electronic business. These capabilities include both "technology" capabilities such as supported communication and messaging protocols, and "business capabilities" in terms of what business processes they jointly support for the purposes of the particular CPA. This section defines and discusses the details in the CPP in terms of the individual XML elements. The discussion is illustrated with some XML fragments and reference should be made to the DTD and sample CPP in the appendices.

Most of the XML elements in this section are described in detail in 7, "CPP Definition". In general, this section does not repeat that information. The discussions in this section are limited to those elements that are not in the CPP or that for which additional discussion is required in the CPA context. Reference should be made to the DTD and sample CPA in the appendices.

8.1 CPA Structure

<CollaborationProtocolAgreement id = "N01"


xmlns="http://www.ebxml.org/namespaces/tradePartner"

xmlns:bpm = 

"http://www.ebxml.org/namespaces/businessProcess"


xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"


xmlns:xlink = "http://www.w3.org/1999/xlink">


<CPAType> <!--may appear 0 or 1 times-->



…


</CPAType> 


<Status value = "proposed"/>


<Start>1988-04-07T18:39:09</Start>


<Duration>124</Duration>


<!--ConversationConstraints may appear 0 or 1 times-->

<ConversationConstraints invocationLimit = "100" 

concurrentConversations = "4"/>


<Party partyId = "N01">



…


</Party>


<Party partyId = "N01">



…


</Party>


<!--CollaborationProtocol may appear one or more times-->


<CollaborationProtocol version = "1.0" id = "N07" 

xlink:type = "locator" 

xlink:href = 

"http://www.ebxml.org/services/purchasing.xml"/>


<!--ds:signature may appear 0 or 1 times-->


<ds:Signature>any combination of text and elements

</ds:Signature>

</CollaborationProtocolAgreement>
8.2 CollaborationProtocolAgreement element

The CollaborationProtocolAgreement element is the root element of a collaboration protocol agreement document or CPA.  The CPA is composed of the following child elements, each of which is described in greater detail in subsequent sections:

· a CPAType element provides information about the general nature of the CPA
· a REQUIRED Status element that identifies the state of the process that creates the CPA
· a REQUIRED Start element that records the date and time that the CPA goes into effect
· a Duration element that records the amount of time after which the CPA must be renegotiated by the Parties
· the ConversationConstraints element documents certain agreements about conversation processing
· two or more REQUIRED Party elements, one for each Party to the CPA
· one or more REQUIRED CollaborationProtocol elements that provide a link to the XML document that defines the collaboration protocol.  There MAY be one or more CollaborationProtocol elements in a CPA, each one identifying a different business process that the two Parties have agreed to perform
· one or more ds:Signature elements provides for signing the CPA using the XML Digital Signature [XMLDSIG] standard

. 
The CollaborationProtocolAgreement element has the same attributes as have been defined for the CollaborationProtocolProfile as described in Section Error! Reference source not found..

8.2.1 CPAType element

The CPAType element MAY be present in a CPA document. It provides information about the general nature of the CPA. An example of this element follows:

<CPAType>


<Protocol version = "1.1">PIP3A4</Protocol>


<Type>RNIF</Type>

</CPAType>

The CPAType element is composed of the following child elements: 

· a REQUIRED Protocol element identifies the business-level protocol. An example is PIP3A4, a  RosettaNet™ Partner Interface Process.

· a REQUIRED Type element provides additional information about the business protocol.  Specific values depend on the particular protocol and its optional features. An example is RNIF (RosettaNet Implementation Framework).

NOTE:  An implementation may use the CPAType element to determine whether it already has the code to support this particular protocol.

8.2.2 CPA Status

The Status element records the state of the composition/negotiation process that creates the CPA. An example of the Status element follows:

<Status value = "proposed"/>

The Status element has a value attribute that records current state of the CPA. This attribute is an enumeration of the following possible values:

· proposed - meaning that the CPA is still being negotiated by the Parties
· signed - meaning that the CPA has been "signed" by the Parties. This "signing" MAY take the form of a digital signature that is described in section xx below.

NOTE: The Status element MAY be used by a CPA composition and negotiation tool to assist in the process of building a CPA. 

8.2.3 CPA Lifetime

The lifetime of the CPA is given by the Start and Duration > elements.  The syntax is:

<Start>1988-04-07T18:39:09</Start>

<Duration>124</Duration>

8.2.3.1 Start element

The Start element specifies the starting date and time of the CPA. The Start element SHALL be a string value that conforms to the content model of a canonical timeInstant as defined in the XML Schema Datatypes Specification [XMLSCHEMA-2].  For example, to indicate 1:20 pm (Coordinate Universal Time) on May 31, 1999, a Start element would have the following value: 

1999-05-31T13:20:00Z

The Start element SHALL be represented as Coordinated Universal Time (UTC).

8.2.3.2 Duration element

The Duration element specifies the length of time that the CPA is valid. When the end of the CPA's lifetime is reached, any business transactions that are still in progress SHALL be allowed to complete and no new business transactions SHALL be started.  When all in-progress business transactions on each conversation are completed, the conversation shall be terminated whether or not it was completed. The Duration shall be a string value that conforms to the content model of a canonical timeDuration as defined in the XML Schema Datatypes Specification [XMLSCHEMA-2]. For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, a Duration element would have the following value:

P1Y2M3D10H30M

NOTE: It should be understood that if an application recognizes a "unit of business" consisting of multiple business transactions, such units of business may be terminated with no error indication when the end of the lifetime is reached. If the runtime also recognizes this unit of business as a conversation, it could provide an error indication to the application.   If the runtime does not recognize this unit of business as a conversation, it is the responsibility of the application to recognize the situation and recover. 

NOTE: It should be understood that it may not be feasible to wait for outstanding conversations to terminate before ending the CPA since there is no limit on how long a conversation may last.

8.2.4 ConversationConstraints element

The ConversationConstraints element places limits on the number of conversations under the CPA. An example of this element follows:

<ConversationConstraints invocationLimit = "100" 

concurrentConversations = "4"/>

The ConversationConstraints has two attributes as follows:

· the invocationLimit attribute

· the concurrentConversations attribute

8.2.4.1 invocationLimit attribute

The invocationLimit attribute defines the maximum number of conversations that can be processed under the CPA.  When this number has been reached, the CPA is terminated and must be renegotiated. If no value is specified, there is no upper limit on the number of conversations and the lifetime of the CPA is controlled solely by the Duration element.

8.2.4.2 concurrentConversations attribute

The concurrentConversations attribute defines the maximum number of converations that can be in process at the same time. If no value is specified, processing of concurrent conversations is strictly a local matter.

NOTE: concurrentConversations provides a parameter for the Parties to use to agree on performance optimization or to agree to use only sequential processing of conversations. If a request for a new conversation is received when the maximum number of conversations is already in process, an implementation may reject the new conversation. If no value is given for concurrentConversations, how to handle a request for a new conversation for which there is no capacity is a local implementation matter.

8.2.5 Party element

The general characteristics of the Party element are discussed in sections  7.2 and 7.2.2 . 

The CPA SHALL have one Party element for each Party to the CPA.  The Party element specifies the Parties' agreed terms for engaging in a collaboration protocol. 

8.2.6 CollaborationProtocol element

The CollaborationProtocol element identifies the business process that the two Parties have agreed to perform.  See the discussion in Section 7.4 .

8.2.7 Signature element

A CPA document MAY be digitally signed by one or more of the Parties as a means of ensuring its integrity as well as a means of expressing the agreement just as a corporate officer's signature would do for a paper document. Refer to section xx for a description of the use of the Signature element.

8.3 Security Considerations for the CPA

Authentication is bi-directional if each party has to authenticate to the other during a given message exchange.  The alternative is that the client authenticates to the server but not vice-versa.  In most cases, the choice is determined by other factors.  If SSL Ver. 3 is specified for encryption, authentication is always bi-directional.  If the authentication type is PASSWORD, the client authenticates to the server. At the same time, the server may use a certificate to authenticate to the client. If the authentication type is CERTIFICATE, the authentication could be bi-directional or not.  For the purpose of this CPA, it is defined as bi-directional unless otherwise specified. 

It should be understood that in a CPA in which each Party can act as either a server or a client for different business transactions, the security definitions must enable each Party to authenticate to the other, though not necessarily in the same message exchange.

Security at the document-exchange level applies to all messages in both directions for business transactions for which security is enabled.

Additional discussion and examples of signed CPP and CPA will be provided.

9 References

In general, references listed below are those for which specific XML definitions are provided in the CPP and CPA. Other specifications are also referred to in this specification in the sense that they are represented by keywords for which the Parties to the CPA may obtain plug-ins or write custom support software but do not require specific XML tag sets in the CPP and CPA.

In a few cases, the only available specification for a function is a proprietary specification.  These are indicated by notes within the citations below.

9.1 Normative References

The following specifications contain provisions that, through reference in this specification, constitute provisions of this specification.

[XML] Extensible Markup Language (XML), World Wide Web Consortium.

[XMLNS] Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Jan. 1999, http://www.w3.org/TR/REC-xml-names/.

[IPSEC] IP Security Document Roadmap, Internet Engineering Task Force RFC 2411.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task Force RFC 2119.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax; T. Berners-Lee, R. Fielding , L. Masinter - August 1998

[HTTP] Hypertext Transfer Protocol, Internet Engineering Task Force RFC2616.

[RFC822] Standard for the Format of ARPA Internet Text Messages, Internet Engineering Task Force RFC 822.

[S/MIME] S/MIME Version 3 Message Specification, Internet Engineering Task Force RFC 2633.

[MIME] MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies. Internet Engineering Task Force RFC 1521.

[SMTP] Simple Mail Transfer Protocol, Internet Engineering Task Force RFC 821.

[FTP] File Transfer Protocol (FTP), Internet Engineering Task Force RFC 959.

[XMLSCHEMA-2]  XML Schema Datatypes Specification, 

http://www.w3.org/TR/xmlschema-2/

9.2 Non-normative References

The references in this section are either works in progress or prioprietary specifications. However this specification depends on them either in general or if specific choices of function are selected.

[MSSPEC] ebXML Messaging Service Specification, http://www.ebxml.org
[BPMSPEC] ebXML Business Process Specification Schema specification, http://www.ebxml.org.

[TECHARCH] ebXML Technical Architecture Specification, http://www.ebxml.org.

[DIGENV] Digital Envelope, RSA Laboratories, http://www.rsasecurity.com/rsalabs/.  NOTE:  At this time, the only available specification for digital envelope appears to be the RSA Laboratories specification.

 [XMLDSIG] XML Signature Syntax and Processing, Worldwide Web Consortium, http://www.w3.org/TR/xmldsig-core/
[SSL] Secure Sockets Layer, Netscape Communications Corp. http://developer.netscape.com.  NOTE:  At this time, it appears that the Netscape specification is the only available specification of SSL.  Work is in progress in IETF on "Transport Layer Security", which is apparently intended as a replacement for SSL.

[S2ML] Security Services Markup Language, http://s2ml.org/

[XAML] Transaction Authority Markup Language, htt://xaml.org/

10 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers.  The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

Contact Information

  Martin W. Sachs (Team Leader)

  IBM T. J. Watson Research Center

  P.O.B. 704

  Yorktown Hts, NY 10598

  USA

  Phone: 914-784-7287

  email: mwsachs@us.ibm.com

  Chris Ferris

  XML Technology Development

  Sun Microsystems, Inc

  One Network Drive

  Burlington, Ma 01824-0903

  USA

  781-442-3063

  email:  chris.ferris@east.sun.com
  Dale W. Moberg

  Sterling Commerce

  4600 Lakehurst Ct.

  Dublin, OH 43016

  USA

  Phone: 614-793-5015

  email: dale_moberg@stercomm.com

Copyright Statement

Copyright © ebXML 2000. All Rights Reserved.

 This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix  1  Example of CPP Document

<?xml version = "1.0"?>

<!DOCTYPE CollaborationProtocolProfile SYSTEM "cppml%2cv0.23.dtd">

<!--Generated by XML Authority.-->

<CollaborationProtocolProfile id = "id"


xmlns="http://www.ebxml.org/namespaces/tradePartner"


xmlns:bpm = "http://www /namespaces/businessProcess"


xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"


xmlns:xlink = "http://www.w3.org/1999/xlink">


<!--(Party , (CollaborationProtocol | bpm:ProcessSpecification | bpm:BinaryCollaboration | bpm:BusinessTransactionActivity)+ , ds:Signature?)-->


<Party partyId = "N01">



<!--(PartyId+ , PartyDetails , Role+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)-->



<PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>



<PartyId type = "uriReference">urn:www.example.com</PartyId>



<PartyDetails xlink:type="simple" xlink:href="http://example2.com/example.com"/>



<Role certId = "N03" roleId = "N02" name = "buyer">




<!--(+)-->

<ServiceBinding collaborationId="N09" channelId="N04"/>


</Role>



<Role certId = "N03" roleId = "N08" name = "seller">




<!--(+)-->



</Role>



<Certificate certId = "N03">




<!--(ds:KeyInfo)-->




<ds:KeyInfo>REFERENCE [XMLDSIG]</ds:KeyInfo>



</Certificate>



<DeliveryChannel channelId = "N04" transportId = "N05" docExchangeId = "N06">




<!--(Characteristics , ServiceBinding+)-->




<Characteristics nonrepudiationOfOrigin = "true" nonrepudiationOfReceipt = "true" secureTransport = "true" confidentiality = "true" authenticated = "true" authorized = "true"/>



</DeliveryChannel>



<Transport transportId = "N05">




<!--(Protocol , Endpoint+ , TransportEncoding? , TransportTimeout? , TransportSecurity?)-->




<Protocol version = "1.1">HTTP</Protocol>




<Endpoint uri = "http://example.com/servlet/ebxmlhandler" type = "request"/>




<TransportEncoding>base64</TransportEncoding>




<TransportSecurity>





<!--(Protocol , CertificateRef?)-->





<Protocol version = "3.0">SSL</Protocol>





<CertificateRef certId = "N03"/>




</TransportSecurity>



</Transport>



<DocExchange docExchangeId = "N06">




<!--(ebXMLBinding)-->




<ebXMLBinding version = "0.9">





<!--(MessageEncoding? , ReliableMessaging , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)-->





<MessageEncoding version = "base64" packagingType = "need to discuss">only text</MessageEncoding>





<ReliableMessaging deliverySemantics = "BestEffort" idempotency = "false">






<!--(Timeout , Retries , RetryInterval)?-->






<Timeout>30</Timeout>






<Retries>5</Retries>






<RetryInterval>60</RetryInterval>





</ReliableMessaging>





<NonRepudiation>






<!--(Protocol , HashFunction , EncryptionAlgorithm , SignatureAlgorithm , CertificateRef)-->






<Protocol version = "2.0">S/MIME</Protocol>






<HashFunction>sha1</HashFunction>






<SignatureAlgorithm>rsa</SignatureAlgorithm>






<CertificateRef certId = "N03"/>





</NonRepudiation>





<DigitalEnvelope>






<!--(Protocol , EncryptionAlgorithm , CertificateRef)-->






<Protocol version = "2.0">S/MIME</Protocol>






<EncryptionAlgorithm>rsa</EncryptionAlgorithm>






<CertificateRef certId = "N03"/>





</DigitalEnvelope>





<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd" version = "0.7a">http://www.s2ml.org/s2ml/</NamespaceSupported>




</ebXMLBinding>



</DocExchange>


</Party>


<CollaborationProtocol version = "1.0" id = "N07" xlink:type = "locator" xlink:href = "http://www.example.com/services/purchasing.xml">Buy and Sell


</CollaborationProtocol>


<ds:Signature>any combination of text and elements</ds:Signature>

</CollaborationProtocolProfile>

Appendix  2 Example of CPA Document

<?xml version = "1.0"?>

<!DOCTYPE CollaborationProtocolAgreement SYSTEM "cppml%2cv0.23.dtd">

<!--Generated by XML Authority.-->

<CollaborationProtocolAgreement id = "N01"


xmlns="http://www.ebxml.org/namespaces/tradePartner"


xmlns:bpm = "http://www.ebxml.org/namespaces/businessProcess"


xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"


xmlns:xlink = "http://www.w3.org/1999/xlink">


<!--(CPAType? , Status , Start , Duration , ConversationConstraints? , Party+ , (CollaborationProtocol | bpm:BinaryCollaboration | bpm:BusinessTransactionActivity | bpm:ProcessSpecification)+ , ds:Signature?)-->


<CPAType>



<!--(Protocol , Type)-->



<Protocol version = "1.1">PIP3A4</Protocol>



<Type>RNIF</Type>


</CPAType>


<Status value = "proposed"/>


<Start>1988-04-07T18:39:09</Start>


<Duration>124</Duration>


<ConversationConstraints invocationLimit = "100" concurrentConversations = "4"/>


<Party partyId = "N01">



<!--(PartyId+ , PartyDetails , Role+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)-->



<PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>



<PartyId type = "uriReference">urn:www.example.com</PartyId>



<PartyDetails xlink:type="simple" xlink:href="http://example.com/example2.com"/>



<Role certId = "N03" roleId = "N02" name = "buyer">




<!--(ServiceBinding+)-->




<ServiceBinding collaborationId="N09" channelId="N04"/>


</Role>



<Certificate certId = "N03">




<!--(ds:KeyInfo)-->




<ds:KeyInfo>REFERENCE [XMLDSIG]</ds:KeyInfo>



</Certificate>



<DeliveryChannel channelId = "N04" transportId = "N05" docExchangeId = "N06">




<!--(Characteristics , ServiceBinding+)-->




<Characteristics nonrepudiationOfOrigin = "true" nonrepudiationOfReceipt = "true" secureTransport = "true" confidentiality = "true" authenticated = "true" authorized = "true"/>




<ServiceBinding xlink:type = "locator" xlink:href = "http://www.example.com/services/purchasing"/>



</DeliveryChannel>



<Transport transportId = "N05">




<!--(Protocol , Endpoint+ , TransportEncoding? , TransportTimeout? , TransportSecurity?)-->




<Protocol version = "1.1">HTTP</Protocol>




<Endpoint uri = "http://example2.com/servlet/ebxmlhandler" type = "request"/>




<TransportEncoding>base64</TransportEncoding>




<TransportSecurity>





<!--(Protocol , CertificateRef?)-->





<Protocol version = "3.0">SSL</Protocol>





<CertificateRef certId = "N03"/>




</TransportSecurity>



</Transport>



<DocExchange docExchangeId = "N06">




<!--(ebXMLBinding)-->




<ebXMLBinding version = "0.9">





<!--(MessageEncoding? , ReliableMessaging , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)-->





<MessageEncoding version = "base64" packagingType = "need to discuss">only text</MessageEncoding>





<ReliableMessaging deliverySemantics = "BestEffort" idempotency = "false">






<!--(Timeout , Retries , RetryInterval)?-->






<Timeout>30</Timeout>






<Retries>5</Retries>






<RetryInterval>60</RetryInterval>





</ReliableMessaging>





<NonRepudiation>






<!--(Protocol , HashFunction , EncryptionAlgorithm , SignatureAlgorithm , CertificateRef)-->






<Protocol version = "2.0">S/MIME</Protocol>






<HashFunction>sha1</HashFunction>






<SignatureAlgorithm>rsa</SignatureAlgorithm>






<CertificateRef certId = "N03"/>





</NonRepudiation>





<DigitalEnvelope>






<!--(Protocol , EncryptionAlgorithm , CertificateRef)-->






<Protocol version = "2.0">S/MIME</Protocol>






<EncryptionAlgorithm>rsa</EncryptionAlgorithm>






<CertificateRef certId = "N03"/>





</DigitalEnvelope>





<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd" version = "0.7a">http://www.s2ml.org/s2ml/</NamespaceSupported>




</ebXMLBinding>



</DocExchange>


</Party>


<Party partyId = "N01">



<!--(PartyId+ , Role+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)-->



<PartyId type = "uriReference">urn:duns.com:duns:1234567890123</PartyId>



<PartyId type = "uriReference">urn:www.example.com</PartyId>



<PartyDetails xlink:type="simple" xlink:href="http://example2.com/example.com"/>



<Role certId = "N03" roleId = "N08" name = "seller">




<!--(ServiceBinding+)-->




<ServiceBinding collaborationId="N09" channelId="N04"/>


</Role>



<Certificate certId = "N03">




<!--(ds:KeyInfo)-->




<ds:KeyInfo>REFERENCE [XMLDSIG]</ds:KeyInfo>



</Certificate>



<DeliveryChannel channelId = "N04" transportId = "N05" docExchangeId = "N06">




<!--(Characteristics , ServiceBinding+)-->




<Characteristics nonrepudiationOfOrigin = "true" nonrepudiationOfReceipt = "true" secureTransport = "true" confidentiality = "true" authenticated = "true" authorized = "true"/>



</DeliveryChannel>



<Transport transportId = "N05">




<!--(Protocol , Endpoint+ , TransportEncoding? , TransportTimeout? , TransportSecurity?)-->




<Protocol version = "1.1">HTTP</Protocol>




<Endpoint uri = "http://example.com/servlet/ebxmlhandler" type = "request"/>




<TransportEncoding>base64</TransportEncoding>




<TransportSecurity>





<!--(Protocol , CertificateRef?)-->





<Protocol version = "3.0">SSL</Protocol>





<CertificateRef certId = "N03"/>




</TransportSecurity>



</Transport>



<DocExchange docExchangeId = "N06">




<!--(ebXMLBinding)-->




<ebXMLBinding version = "0.9">





<!--(MessageEncoding? , ReliableMessaging , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)-->





<MessageEncoding version = "base64" packagingType = "need to discuss">only text</MessageEncoding>





<ReliableMessaging deliverySemantics = "BestEffort" idempotency = "false">






<!--(Timeout , Retries , RetryInterval)?-->






<Timeout>30</Timeout>






<Retries>5</Retries>






<RetryInterval>60</RetryInterval>





</ReliableMessaging>





<NonRepudiation>






<!--(Protocol , HashFunction , EncryptionAlgorithm , SignatureAlgorithm , CertificateRef)-->






<Protocol version = "2.0">S/MIME</Protocol>






<HashFunction>sha1</HashFunction>






<SignatureAlgorithm>rsa</SignatureAlgorithm>






<CertificateRef certId = "N03"/>





</NonRepudiation>





<DigitalEnvelope>






<!--(Protocol , EncryptionAlgorithm , CertificateRef)-->






<Protocol version = "2.0">S/MIME</Protocol>






<EncryptionAlgorithm>rsa</EncryptionAlgorithm>






<CertificateRef certId = "N03"/>





</DigitalEnvelope>





<NamespaceSupported schemaLocation = "http://www.s2ml.org/s2ml.xsd" version = "0.7a">http://www.s2ml.org/s2ml/</NamespaceSupported>




</ebXMLBinding>



</DocExchange>


</Party>


<CollaborationProtocol version = "1.0" id = "N07" xlink:type = "locator" xlink:href = "http://www.example.com/services/purchasing.xml">Buy and Sell


</CollaborationProtocol>


<ds:Signature>any combination of text and elements</ds:Signature>

</CollaborationProtocolAgreement>

Appendix  3 DTD Corresponding to Complete CPP/CPA  Definition

This DTD defines both the CPP and the CPA.

<?xml version='1.0' encoding='UTF-8' ?>

<!--Generated by XML Authority-->

<!ELEMENT CollaborationProtocolAgreement (CPAType? , Status , Start , Duration , ConversationConstraints? , Party+ , (CollaborationProtocol | bpm:BinaryCollaboration | bpm:BusinessTransactionActivity | bpm:ProcessSpecification)+ , ds:Signature?)>

<!ATTLIST CollaborationProtocolAgreement  id          ID     #IMPLIED

                                          xmlns:bpm   CDATA  #FIXED 'http://www.ebxml.org/namespaces/businessProcess'

                                          xmlns:ds    CDATA  #FIXED 'http://www.w3.org/2000/10/xmldsig#'

                                          xmlns:xlink CDATA  #FIXED 'http://www.w3.org/1999/xlink' >

<!ELEMENT CollaborationProtocolProfile (Party , (CollaborationProtocol | bpm:ProcessSpecification | bpm:BinaryCollaboration | bpm:BusinessTransactionActivity)+ , ds:Signature?)>

<!ATTLIST CollaborationProtocolProfile  id          ID     #IMPLIED

                                        xmlns:bpm   CDATA  #FIXED 'http://www.ebxml.org/namespaces/businessProcess'

                                        xmlns:ds    CDATA  #FIXED 'http://www.w3.org/2000/10/xmldsig#'

                                        xmlns:xlink CDATA  #FIXED 'http://www.w3.org/1999/xlink' >

<!ELEMENT Protocol (#PCDATA)>

<!ATTLIST Protocol  version CDATA  #REQUIRED >

<!--**********************************************************************-->

<!-- Specification of Roles and Participants                              -->

<!--**********************************************************************-->

<!ELEMENT Role (ServiceBinding+)>

<!ATTLIST Role  certId IDREF  #IMPLIED

                roleId ID     #REQUIRED

                name   CDATA  #IMPLIED >

<!ELEMENT Party (PartyId+ , PartyDetails, Role+ , Certificate+ , DeliveryChannel+ , Transport+ , DocExchange+)>

<!ATTLIST Party  partyId ID  #REQUIRED >

<!ELEMENT PartyId (#PCDATA)>

<!ATTLIST PartyId  type CDATA  #IMPLIED >

<!ELEMENT PartyDetails EMPTY>

<!ATTLIST PartyDetails 


xlink:type (simple) #FIXED 'simple'


xlink:href CDATA #REQUIRED>

<!ELEMENT DeliveryChannel (Characteristics , ServiceBinding+)>

<!ATTLIST DeliveryChannel  channelId     ID     #REQUIRED

                           transportId   IDREF  #REQUIRED

                           docExchangeId IDREF  #IMPLIED >

<!--**********************************************************************-->

<!-- Specification of Transport Protocol                                  -->

<!--**********************************************************************-->

<!ELEMENT Transport (Protocol , Endpoint+ , TransportEncoding? , , TransportSecurity?)>

<!ATTLIST Transport  transportId ID  #REQUIRED >

<!ELEMENT Endpoint EMPTY>

<!ATTLIST Endpoint  uri    CDATA     #REQUIRED

                    type   (login | request | response | error | allPurpose) "allPurpose"

                    a-dtype NMTOKENS  'uri uri' >

<!ELEMENT TransportEncoding (#PCDATA)>

<!ELEMENT Timeout (#PCDATA)>

<!ELEMENT Retries (#PCDATA)>

<!ELEMENT RetryInterval (#PCDATA)>

<!--**********************************************************************-->

<!-- Specification of Transport Security Protocol                         -->

<!--**********************************************************************-->

<!ELEMENT TransportSecurity (Protocol , CertificateRef?)>

<!ELEMENT Certificate (ds:KeyInfo)>

<!ATTLIST Certificate  certId ID  #REQUIRED >

<!--**********************************************************************-->

<!-- Specification of DocExchange Protocol                                -->

<!--**********************************************************************-->

<!ELEMENT DocExchange (ebXMLBinding)>

<!ATTLIST DocExchange  docExchangeId ID  #IMPLIED >

<!ELEMENT ReliableMessaging (Timeout , Retries , RetryInterval)?>

<!ATTLIST ReliableMessaging  deliverySemantics  (OnceAndOnlyOnce | BestEffort )  #REQUIRED

                             idempotency       CDATA     #REQUIRED

                             a-dtype           NMTOKENS  'idempotency boolean' >

<!ELEMENT NonRepudiation (Protocol , HashFunction , EncryptionAlgorithm , SignatureAlgorithm , CertificateRef)>

<!ELEMENT HashFunction (#PCDATA)>

<!ELEMENT EncryptionAlgorithm (#PCDATA)>

<!ELEMENT SignatureAlgorithm (#PCDATA)>

<!ELEMENT DigitalEnvelope (Protocol , EncryptionAlgorithm , CertificateRef)>

<!--**********************************************************************-->

<!-- Specification of Business Protocol                                   -->

<!--**********************************************************************-->

<!ELEMENT CollaborationProtocol (#PCDATA)>

<!ATTLIST CollaborationProtocol  version    CDATA     #REQUIRED

                                 id         ID        #REQUIRED

                                 xlink:type  (locator )  #FIXED 'locator'

                                 xlink:href CDATA     #REQUIRED

                                 e-dtype    NMTOKEN   #FIXED 'string'

                                 a-dtype    NMTOKENS  'xlink:href uri' >

<!ELEMENT CertificateRef (#PCDATA)>

<!ATTLIST CertificateRef  certId IDREF  #IMPLIED >

<!ELEMENT MessageEncoding (#PCDATA)>

<!ATTLIST MessageEncoding  version       CDATA  #REQUIRED

                           packagingType CDATA  #IMPLIED >

<!ELEMENT ebXMLBinding (MessageEncoding? , ReliableMessaging? , NonRepudiation? , DigitalEnvelope? , NamespaceSupported+)>

<!ATTLIST ebXMLBinding  version CDATA  #REQUIRED >

<!ELEMENT ds:KeyInfo ANY>

<!ELEMENT ds:Signature ANY>

<!ELEMENT NamespaceSupported (#PCDATA)>

<!ATTLIST NamespaceSupported  schemaLocation CDATA     #IMPLIED

                              version        CDATA     #REQUIRED

                              e-dtype        NMTOKEN   #FIXED 'uri'

                              a-dtype        NMTOKENS  'schemaLocation uri' >

<!ELEMENT Characteristics EMPTY>

<!ATTLIST Characteristics  nonrepudiationOfOrigin  CDATA     #IMPLIED

                           nonrepudiationOfReceipt CDATA     #IMPLIED

                           secureTransport         CDATA     #IMPLIED

                           confidentiality         CDATA     #IMPLIED

                           authenticated           CDATA     #IMPLIED

                           authorized              CDATA     #IMPLIED

                           a-dtype                 NMTOKENS  'nonrepudiationOfOrigin  boolean

                                                              nonrepudiationOfReceipt boolean

                                                              secureTransport         boolean

                                                              confidentiality         boolean

                                                              authenticated           boolean

                                                              authorized              boolean' >

<!ELEMENT ServiceBinding EMPTY>

<!ATTLIST ServiceBinding  xlink:type  (locator )  #FIXED 'locator'

                          xlink:href CDATA     #REQUIRED

                          a-dtype    NMTOKENS  'xlink:href uri' >

<!ELEMENT CPAType (Protocol , Type)>

<!ELEMENT Status EMPTY>

<!ATTLIST Status  value  (signed | proposed )  #REQUIRED >

<!ELEMENT Start (#PCDATA)>

<!ATTLIST Start  e-dtype NMTOKEN  #FIXED 'dateTime' >

<!ELEMENT Duration (#PCDATA)>

<!ATTLIST Duration  e-dtype NMTOKEN  #FIXED 'int' >

<!ELEMENT Type (#PCDATA)>

<!ELEMENT ConversationConstraints EMPTY>

<!ATTLIST ConversationConstraints  invocationLimit         CDATA     #IMPLIED

                                   concurrentConversations CDATA     #IMPLIED

                                   a-dtype                 NMTOKENS  'invocationLimit         int

                                                                      concurrentConversations int' >

<!ELEMENT bpm:BinaryCollaboration ANY>

<!ELEMENT bpm:ProcessSpecification ANY>

<!ELEMENT bpm:BusinessTransactionActivity ANY>

Appendix  4 XML Schema Document Corresponding to Complete CPA Definition

Appendix  5 Mapping of CPA Constructs to ebXML Message Header

This appendix will describe how specific constructs defined in the CPA are mapped to the ebXML message header defined by the ebXML Messaging Service Specification ( ref. 0 in Section 9, "References").

� EMBED FLW3Presentation  ���








1
1
cpa-cpp-spec-0.29-qr.doc










[image: image3.wmf]Delivery Channel

ID=DC1

Transport

ID=T1

Doc.Exch.

ID=D1

Delivery Channel

ID=DC2

Transport

ID=T2

Doc.Exch.

ID=D2

Delivery Channel

ID=DC3

Transport

ID=T3

Doc.Exch.

ID=D3

_1019244267.unknown

