ebXML Technical Architecture Team

January 2001

[image: image20.jpg]Creating A Single Global Electronic Market

ebXML Technical Architecture Specification

ebXML Technical Architecture Project Team

4 January 2001

1 Status of this Document

This document is a working DRAFT for the eBusiness community. Distribution of this document is unlimited. This document will go through the formal Quality Review Process as defined by the ebXML Requirements Document. The formatting for this document is based on the Internet Society’s Standard RFC format.

This version:

ebXML_TA_v1.0.doc
Latest version:

ebXML_TA_v1.0.doc
Previous version:

ebXML_TA_v0.95.doc

2 ebXML Technical Architecture Participants

We would like to recognize the following for their significant participation in the development of this document.

Team Lead:
Anders Grangard, EDI France

Editors:
Brian Eisenberg, DataChannel

Duane Nickull, XML Global Technologies

Participants:
Colin Barham, TIE

Al Boseman, ATPCO

Christian Barret, GIP-MDS

Dick Brooks, Group 8760
Cory Casanave, DataAccess Technologies

Robert Cunningham, Military Traffic Management Command, US Army
Christopher Ferris, Sun Microsystems
Peter Kacandes, Sun Microsystems

Kris Ketels, SWIFT

Piming Kuo, Worldspan

Kyu-Chul Lee, Chungnam National University
Henry Lowe, OMG

Melanie McCarthy, General Motors

Bruce Peat, eProcessSolutions

John Petit, KPMG Consulting

Mark Heller, MITRE

Scott Hinkelman, IBM

Karsten Riemer, Sun Microsystems

Lynne Rosenthal, NIST

Nikola Stojanovic, Columbine JDS Systems
Jeff Sutor, Sun Microsystems
David RR Webber, XML Global Technologies

4 Introduction

4.1 Summary of Contents of Document

1ebXML Technical Architecture Specification

11 Status of this Document

12 ebXML Technical Architecture Participants

34 Introduction

34.1 Summary of Contents of Document

44.2 Audience and Scope

54.3 Related Documents

54.4 Normative References

54.5 Document Conventions

65 Design Objectives

65.1 Problem Description & Goals for ebXML

65.2 Caveats and Assumptions

66 ebXML System Overview

97 ebXML Architecture Reference Model

97.1 Overview

107.2 ebXML Business Operational View

137.3 ebXML Functional Service View

148 ebXML Functional Phases

148.1 Overview

148.1.1 The Implementation Phase

148.1.2 The Discovery and Retrieval Phase

148.1.3 The Run Time Phase

148.2 Implementation Phase

158.3 Discovery and Retrieval Phase

168.4 Run Time Phase

179 ebXML Infrastructure

179.1 Trading Partner Information [CPP and CPA’s]

179.1.1 Introduction

179.1.2 CPP Formal Functionality

179.1.3 CPA Formal Functionality

189.1.4 CPP Interfaces

199.1.5 CPA Interfaces

199.1.6 Non-Normative Implementation Details [CPP and CPA’s]

199.2 Business Process and Information Modeling

199.2.1 Introduction

219.2.2 Formal Functionality

229.2.3 Interfaces

239.2.4 Non-Normative Implementation Details

239.3 Core Components and Core Library Functionality

239.3.1 Introduction

249.3.2 Formal Functionality

249.3.3 Interfaces

249.3.4 Non-Normative Implementation Details

9.4 25Registry Functionality

259.4.1 Introduction

269.4.2 Formal Functionality

279.4.3 Interfaces

289.4.4 Non-Normative Implementation Details

289.5 Messaging Service Functionality

289.5.1 Introduction

309.5.2 Formal Functionality

319.5.3 Interfaces

329.5.4 Non-Normative Implementation Details

3310 Conformance

3310.1 Introduction

3310.2 Conformance to ebXML

3410.3 Conformance to the Technical Architecture Specification

3410.4 General Framework of Conformance Testing

3411.0 Security Considerations

3411.1 Introduction

35Appendix A: Example ebXML Business Scenarios

35Scenario 1

35Two Trading Partners set-up an agreement and run the associated exchange.

36Scenario 2:

36Three or more Trading Partners set-up a Business Process implementing a supply-chain eBusiness scenario.

38Scenario 3

38A Company sets up a Portal which defines a Business Process involving the use of external business services

38Scenario 4

38Three or more Trading Partners engage in eBusiness using Business Processes that were created by each respective Trading Partner and run the associated business exchanges.

40Disclaimer

40Copyright Statement

4.2 Audience and Scope

This document is intended primarily for the ebXML Project Teams to help guide their work. Secondary audiences MAY include software implementers, international standards bodies, and other industry organizations.

This document describes the underlying architecture for ebXML. It provides a high level overview of ebXML and describes the relationships, interactions, and basic functionality of ebXML. It SHOULD be used as a roadmap to learn: (1) what ebXML is, (2) what problems ebXML solves, and (3) core ebXML functionality and architecture.

4.3 Related Documents

As mentioned above, other documents provide detailed definitions of some of the components of ebXML and of their inter-relationship. They include ebXML specifications on the following topics:

1. Requirements

2. Business Process and Information Meta Model

3. Core Components

4. Registry and Repository

5. Trading Partner Information

6. Messaging Services

These specifications are available for download at http://www.ebxml.org.

4.4 Normative References

The following standards contain provisions that, through reference in this text, constitute provisions of this specification. At the time of publication, the editions indicated below were valid. All standards are subject to revision, and parties to agreements based on this specification are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

RFC 2119

W3C XML v1.0 Second Edition Specification

ISO/IEC 14662: Open-edi Reference Model

ISO 11179/3 Metadata Repository

ISO 10646: Character Encoding

ISO 8601:2000 Date/Time/Number Data typing

DC 128 GUID

4.5 Document Conventions

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [Bra97].

The following conventions are used throughout this document:

· Capitalized Italics words are defined in the ebXML Glossary.

· [NOTES: are used to further clarify the discussion or to offer additional suggestions and/or resources]

5 Design Objectives

5.1 Problem Description & Goals for ebXML

For over 25 years Electronic Data Interchange (EDI) has given companies the prospect of eliminating paper documents, reducing costs, and improving efficiency by exchanging business information in electronic form. Ideally, companies of all sizes could conduct eBusiness in a completely ad hoc fashion, without prior agreement of any kind. But this vision has not been realized with EDI; only large companies are able to afford to implement it, and much EDI-enabled eBusiness is centered around a dominant enterprise that imposes proprietary integration approaches on its trading partners.

In the last few years, the Extensible Markup Language (XML) has rapidly become the first choice for defining data interchange formats in new eBusiness applications on the Internet. Many people have interpreted the XML groundswell as evidence that "EDI is dead" – made completely obsolete by the XML upstart -- but this view is naïve from both business and technical standpoints.

EDI implementations encode substantial experience in business processes, and companies with large investments in EDI integration will not abandon them without good reason. XML might enable more open, more loosely-coupled, and more object- or component-oriented systems than EDI. XML might enable more flexible and innovative "eMarketplace" business models than EDI. But the challenges of designing messages that meet business process requirements and standardizing their semantics are independent of the syntax in which the messages are encoded.

The ebXML specifications provide a framework in which EDI's substantial investments in business processes can be preserved in an architecture that exploits XML's new technical capabilities.
5.2 Caveats and Assumptions

This specification is designed to provide a high level overview of ebXML, and as such, does not provide the level of detail required to build ebXML applications, components, and related services. Please refer to each of the respective ebXML Project Team Specifications to get the level of detail.

6 ebXML System Overview

Figure 1 below shows a high level conceptual model for two Trading Partners, first configuring and then engaging in a simple business transaction and interchange. This model is provided as an example of the process and steps that MAY be REQUIRED to configure and deploy ebXML applications and related system components. These components MAY be implemented in an incremental manner. The ebXML specifications are not limited to this simple model, provided here as quick introduction to the concepts. Specific ebXML implementation examples are described in Appendix A.

The conceptual overview described below introduces the following concepts and underlying architecture:

1. A standard mechanism for describing a Business Process and its associated information model.

2. A mechanism for registering and storing a Business Process and Information Meta Model so that it can be shared/reused.

3. Discovery of information about each participant including:

· The Business Processes they support.

· The Business Service Interfaces they offer in support of the Business Process.

· The Business Messages that are exchanged between their respective Business Service Interfaces.

· The technical configuration of the supported transport, security and encoding protocols.

4. A mechanism for registering the aforementioned information so that it MAY be discovered and retrieved.

5. A mechanism for describing a mutually agreed upon business arrangement which MAY be derived from information provided by each participant from item 3 above.

6. A standardized business Messaging Service that enables interoperable, secure and reliable exchange of messages between two parties.

7. A mechanism for configuration of the respective Messaging Services to engage in the agreed upon Business Process in accordance with the constraints defined in the business arrangement.

[image: image1.wmf]ebXML

compliant

system

Business Profiles

Business Scenarios

ebXML

Registry

XML

Request Business Details

1

Build Local System

Implementation

Register Implementation Details

Register COMPANY A Profile

3

2

5

Agree on Business Arrangement

4

Query about COMPANY A profile

Download

Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

ebXML

compliant

system

Business Profiles

Business Scenarios

ebXML

Registry

XML

Request Business Details

1

Build Local System

Implementation

Register Implementation Details

Register COMPANY A Profile

3

2

5

Agree on Business Arrangement

4

Query about COMPANY A profile

Download

Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

ebXML

compliant

system

Business Profiles

Business Scenarios

ebXML

Registry

XML

Request Business Details

1

Build Local System

Implementation

Register Implementation Details

Register COMPANY A Profile

3

2

5

Agree on Business Arrangement

4

Query about COMPANY A profile

Download

Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

Figure 1 - a high level overview of the interaction of two companies conducting eBusiness using ebXML.
In Figure 1, Company A has become aware of an ebXML Registry that is accessible on the Internet (Figure 1, step 1). Company A, after reviewing the contents of the ebXML Registry, decides to build and deploy its own ebXML compliant application (Figure 1, step 2). It SHOULD be noted that custom software development is not a necessary prerequisite for ebXML participation. ebXML compliant applications and components MAY also be commercially available as shrink-wrapped solutions.
Company A then submits its own implementation details, reference links, and Business Profile information to the ebXML Registry (Figure 1, step 3). The business profile submitted to the ebXML Registry describes the company’s ebXML capabilities and constraints, as well as its supported business processes. These business scenarios are XML versions of the Business Processes and associated information parcels (e.g. a sales tax calculation) that the company is able to engage in. After receiving verification that the format and usage of a business scenario is correct, an acknowledgment is sent to Company A by the ebXML Registry (Figure 1, step 3).

Company B discovers the business scenarios supported by Company A in the ebXML Registry (Figure 1, step 4). Company B sends a request to Company A stating that they would like to engage in a business transaction using ebXML (Figure 1, step 5). Company B acquires a shrink-wrapped application that is ebXML compliant. Company A knows that its business scenarios and profiles are compliant with the ebXML infrastructure based on the information available in the ebXML specifications.

Before engaging in that the scenario Company B submits a proposed business arrangement directly to Company A’s ebXML compliant software interface. The proposed business arrangement outlines the mutually agreed upon business scenarios and specific agreements on who it wants to conduct business transactions with Company A. The business arrangement also contains information pertaining to the messaging requirements for transactions to take place, contingency plans, and security-related requirements (Figure 1, step 5). Company A accepts the business agreement which then triggers an acknowledgement message that is sent directly to Company B’s ebXML software application (Figure 1, step 5). Company A and B are now ready to engage in eBusiness using ebXML (Figure 1, step 6).

7 ebXML Architecture Reference Model

7.1 Overview

The ebXML Architecture Reference Model uses the following two views to describe the relevant aspects of eBusiness transactions. This model is based upon the Open-edi Reference Model, ISO 14662.

[image: image2.wmf]Business Operational View

Functional Service View

Comply with

Covered by

Comply with

Covered by

Business aspects

of

business transactions

Information technology

aspects of

business transactions

BOV RELATED

STANDARDS

FSV RELATED

STANDARDS

Viewed

as

Interrelated

B

U

S

I

N

E

S

S

T

R

A

N

S

A

C

T

I

O

N

S

Business Operational View

Functional Service View

Comply with

Covered by

Comply with

Covered by

Business aspects

of

business transactions

Information technology

aspects of

business transactions

BOV RELATED

STANDARDS

FSV RELATED

STANDARDS

Viewed

as

Interrelated

B

U

S

I

N

E

S

S

T

R

A

N

S

A

C

T

I

O

N

S

Figure 2 - ebXML Reference Model
The ebXML architecture is broken down into the Business Operational View (BOV) and the supporting Functional Service View (FSV) described above. The assumption for ebXML is that the FSV serves as a reference model that MAY be used by commercial software vendors to help guide them during the development process. The underlying goal of the ebXML Reference Model is to provide a clear distinction between the operational and functional views, so as to ensure the maximum level of system interoperability and backwards compatibility with legacy systems (when applicable). As such, the resultant BOV-related standards provide the business and object class models needed to construct ebXML compliant applications and components.

While business practices from one organization to another are highly variable, most activities can be decomposed into Business Processes which are more generic to a specific type of business. This analysis through the modeling process will identify object classes and models that are likely candidates for standardization. The ebXML approach looks for standard reusable components from which to construct interoperable ebXML applications and components. The BOV and FSV are described in more detail below.
The BOV addresses:

a) The semantics of business data in transactions and associated data interchanges

b) The architecture for business transactions, including:

· operational conventions;

· agreements and arrangements;

· mutual obligations and requirements.

These specifically apply to the business needs of ebXML Trading Partners.

The FSV addresses the supporting services meeting the mechanistic needs of ebXML. It focuses on the information technology aspects of:

· Functional capabilities;

· Service Interfaces;

· Protocols and Messaging Services.
This includes, but is not limited to:

· Capabilities for implementation, discovery, deployment and run time scenarios;

· User Application interfaces;

· Data transfer infrastructure interfaces;

· Protocols for enabling interoperability of XML vocabulary deployments from different organizations.

7.2 ebXML Business Operational View

The modeling techniques described in this section are not mandatory requirements for participation in ebXML compliant business transactions. Figure 3 below provides a detailed view of the ebXML BOV.

[image: image3.wmf]Business Collaboration

Knowledge

Analysis Artifacts

Sequence Diagrams

Collaboration Diagrams

Design Artifacts

State Diagrams

Final Class Diagrams

Activity Diagrams

Conceptual Diagrams

State Diagrams

Based on ebXML Meta Model

Core Library

Business Processes

Business Library

Core Library

Core & Aggregate

Components

Business Library

Business Context

Use Case Diagrams

Use Case Descriptions

Requirements Artifacts

Business Process and Information Models

(Compliant to the ebXML Meta Model)

Figure 3 - the Business Operational View

In Figure 3 above, Business Collaboration Knowledge is captured in a Core Library. The Core Library contains data and process definitions, including relationships and cross-references, as expressed in business terminology that MAY be tied to an accepted industry classification scheme or taxonomy. The Core Library is the bridge between the specific business or industry language and the knowledge expressed by the models in a more generalized industry neutral language.

The first phase defines the requirements artifacts that describe the problem using Use Case Diagrams and Descriptions. If Core Library entries are available from an ebXML compliant Registry they will be utilized, otherwise new Core Library entries will be created and registered in an ebXML compliant Registry.

The second phase (analysis) will create activity and sequence diagrams describing the Business Processes. Class Diagrams will capture the associated information parcels (business messages). The analysis phase reflects the business knowledge contained in the Core Library. No effort is made to force the application of object-oriented principles. The class diagram is a free structured data diagram.

The design phase is the last step of standardization, which MAY be accomplished by applying object-oriented principles. In addition to generating collaboration diagrams, a state diagram MAY also be created. The class view diagram from the analysis phase will undergo harmonization to align it with other models in the same industry and across others.

In ebXML interoperability is achieved by applying Business Objects across all class models. The content of the Business Library is created by analyzing existing Business Objects as used by many industries today in conjunction with the Core Library content and ebXML selected modeling methodology.

7.3 ebXML Functional Service View

[image: image4.wmf]Registration

Business Process and Information Models

(Compliant to the ebXML Meta Model)

Model to XML Conversion

Registry Service

Interface

Registries

Internal

Business

Application

Implementers

Shrink-

wrapped

Application

Retrieval of Profiles &

new/updated ebXML Models

Retrieval of Profiles &

new/updated ebXML Models

Register

CPP

Register

CPP

Retrieval of ebXML

Models and Profiles

Build

Build

Business Service

Interface

Business Service

Interface

CPA

Payload

CPP

Derives

CPA

Governs

Figure 4 - ebXML Functional Service View

As illustrated in Figure 4 above, the ebXML Registry system is an important part of ebXML. It serves as the storage facility for the Business Process and Information Meta Models developed by industry groups, SMEs, and other organizations. In order to store the models in the Registry, they are converted to XML (e.g. XML DTD, Schema, etc.). This XML-based business information SHALL be expressed in a manner that will allow discovery down to the atomic data level via a consistent methodology. In order to enable this functionality, the use of Unique Identifiers (UIDs) is REQUIRED for all items within an ebXML Registry System. UID keys are REQUIRED references for all ebXML content. Globally Unique Identifiers (DC 128 - GUID) MAY be used to ensure that Registry entries are truly globally unique, and thus when systems query a Registry for a GUID, one and only one result SHALL be retrieved.
To facilitate semantic recognition of Business and Information Meta Models, the Registry system SHALL provide a mechanism for incorporating human readable descriptions for Registry items. Existing Business Process and Information Models (e.g. RosettaNet PIPs) SHALL be assigned UID keys when they are registered in an ebXML compliant Registry system. These UID keys MAY be implemented in physical XML syntax in a variety of ways. These mechanisms include, but are not limited to:

· A pure explicit reference mechanism (example: URN:UID method),

· A referential method (example: URI:UID / namespace:UID),

· An object-based reference compatible with W3C Schema (example URN:complextype name), and

· A datatype based reference (example: ISO 8601:2000 Date/Time/Number datatyping and then legacy datatyping).

·
·
·
·
Components in ebXML MUST facilitate multilingual support. A UID reference is particularly important here as it provides a language neutral reference mechanism. To enable multilingual support, the ebXML specification SHALL be compliant with Unicode and ISO/IEC 10646 for character set and UTF-8 or UTF-16 for character encoding.

The underlying ebXML Architecture is distributed in such a manner to minimize the potential for a single point of failure within the ebXML infrastructure. This specifically refers to Registry and Repository Services (see Registry and Repository Functionality, Section 9.4 for details of this architecture).

8 ebXML Functional Phases
8.1 Overview
8.1.1 The Implementation Phase
The implementation phase deals specifically with the procedures for creating an application of the ebXML infrastructure.

8.1.2 The Discovery and Retrieval Phase

The Discovery and Retrieval Phase covers all aspects of actual discovery of ebXML related resources and self enabled into the ebXML infrastructure.

8.1.3 The Run Time Phase

The Run Time phase covers the execution of an ebXML scenario with the actual associated ebXML transactions.

8.2 Implementation Phase

A Trading Partner wishing to engage in an ebXML compliant transaction, must first request a copy of the ebXML specification. The Specification is then downloaded to the Trading Partner(via HTTP, FTP, etc.). The Trading Partner studies the ebXML specification and subsequently requests to download the Core Library and the Business Object Library. The Trading Partner MAY also request other Trading Partners’ Business Process information (stored in it business profile) for analysis and review. The Trading Partner MAY also submit its own Business Process information to an ebXML compliant Registry system.

Figure 5 below, illustrates a basic interaction between an ebXML Registry system and a Business Service Interface.

[image: image5.wmf]Request

Receive

Update

ebXML

Registry

Business

Process &

Information

Models

Core Library

Business

Library

ebXML Business

Service Interface

(application)

Collaboration

Protocol Profiles

Figure 5 - Functional Service View: Implementation Phase

8.3 Discovery and Retrieval Phase

A Trading Partner who has implemented an ebXML Business Service Interface can now begin the process of discovery and retrieval (Figure 6 below). One possible discovery method MAY be to request the Trading Partner Profile of another Trading Partner. Requests for updates to Core Libraries, Business Object Libraries and updated or new Business Process and information models are also methods that SHALL be supported by an ebXML Application. This is the phase where Trading Partners discover the semantic meaning of business information being requested by other Trading Partners.

[image: image6.wmf]Request

Receive

Update

Send

Receive

ebXML

Registry

ebXML Business

Service Interface

(application)

ebXML Business

Service Interface

(application)

List of

Scenarios

Messaging

Constraints

Security

Contstraints

Business

Process &

Information

Models

Core Library

Business

Library

Collaboration

Protocol Profiles

Figure 6 - Functional Service View: Discovery and Retrieval Phase

8.4 Run Time Phase

In the Run Time Phase, ebXML messages are being exchanged between Trading Partners utilizing the ebXML Messaging Service. If it becomes necessary to make calls to the Registry during the Run Time, this will be considered as a reversion to the Discovery and Retrieval Phase.

[image: image7.wmf]Send

Receive

ebXML Business

Service Interface

(application)

ebXML Business

Service Interface

(application)

Figure 7 - Functional Service View: Run Time Phase

9 ebXML Infrastructure

9.1 Trading Partner Information [CPP and CPA’s]
9.1.1 Introduction
To facilitate the process of conducting eBusiness, SMEs and other organizations need a mechanism to publish information about the Business Processes they support along with specific technology implementation details about their capabilities for exchanging business information. This is accomplished through the use of a Collaboration Protocol Profile (CPP). The CPP is a document which allows a Trading Partner to express their minimum Business Process and Business Service Interface requirements in a manner where they can be universally understood by other ebXML compliant Trading Partners.
To facilitate the process of conducting electronic business, organizations also need a mechanism to publish information about the Business Processes they support, along with specific technology details about their capabilities for sending and receiving business documents. ebXML defines the ability for this to be realized under the broad notion of a Collaboration Protocol Agreement (CPA). A CPA is a document that represents the intersection of two CPP’s and is mutually agreed upon by both Trading Partners who wish to conduct eBusiness using ebXML.
9.1.2 CPP Formal Functionality
The CPP describes the specific capabilities that a Trading Partner supports as well as the Service Interface requirements that need to be met in order to exchange business documents with that Trading Partner. Each Trading Partner SHALL register one and only one CPP in an ebXML compliant Registry system. The CPP contains essential information about the Trading Partner, which MAY include (but is not limited to): contact information, industry classification, supported business processes, and interface requirements.

CPP’s describe the Business Processes that a given Trading Partner supports, plus the Messaging Service interface requirements that the given Trading Partner will use as a support mechanism for such collaborations. CPP’s MAY optionally include security and other implementation specific details. Each ebXML compliant Trading Partner SHALL register their CPP in an ebXML compliant Registry system, thus providing a discovery mechanism that allows Trading Partners to (1) find one another, (2) discover the Business Process that other Trading Partners support.
9.1.3 CPA Formal Functionality

A Collaboration Protocol Agreement (CPA) describes: (1) the Messaging Service (technology), and (2) the Business Process (application) requirements that are agreed upon by two or more Trading Partners. Conceptually, ebXML supports a three level view of narrowing subsets to arrive at CPA’s for transacting eBusiness. The outer-most scope relates to all of the possibilities that a Trading Partner could do, with a subset of that of what a Trading Partner is capable of doing, with a subset of what a Trading Partner “will” do.
A CPA contains the Messaging Service interface requirements as well as the implementation details pertaining to the mutually agreed upon Business Processes that both Trading Partners agree to use to conduct eBusiness. Trading Partners MAY decide to register their CPA’s in an ebXML compliant Registry system, but this is not a mandatory part of the CPA creation process.

[image: image8.wmf]

Possibilities

Capabilities

Agreements

Figure 8 - Three level view of CPA’s
Business Collaborations are the first order of support that can be claimed by ebXML Trading Partners. This “claiming of support” for specific Business Collaborations is facilitated by a distinct profile defined specifically for publishing, or advertising in a directory service, such as an ebXML Registry or other available service. Figure 9 below outlines the scope for Collaboration Protocol Agreements within ebXML.

[image: image9.wmf]

Collaboration Protocol Agreements

Business

Collaborations

Other

In scope

for ebXML

Figure 9 - Scope for CPA’s
9.1.4 CPP Interfaces
Business Process: The CPP must be capable of referencing one or more business processes supported by the entity owning the CPP instance. The CPP must also reference the Roles within that BP that the user is capable of assuming.

The CPP must be capable of referencing, either directly or indirectly, the CPA for each supported Business Process.

The CPP must be capable of being stored and retrieved from a Registry Mechanism

The CPP must be capable of being carried in the payload of the ebXML Messaging service. A CPP may also describe binding details that are used to build an ebXML message header.

9.1.5 CPA Interfaces

A CPA has an Interface to a software component used by a Trading Partner via the ebXML Messaging mechanism.

A CPA has an interface to the CPP by the fact it must narrow down the Trading Partners Capabilities into what the Trading Partner “will” do. What a Trading Partner “will” do must be within that Trading Partners’ capabilities hence an abstract interface between the two documents.

A CPA has an interface to a Business Process document by the fact it may be reached and referenced for each Business Process.

A CPA also may be stored in a Registry mechanism, hence an implied ability to be stored and retrieved is present.

9.1.6 Non-Normative Implementation Details [CPP and CPA’s]

A CPA is negotiated after the discovery process and is essentially a snapshot of the Messaging Services and Business Process related information that two or more Trading Partners agree to use to exchange business information. If any parameters contained within an accepted CPA change after the agreement has been executed, a new CPA SHALL be negotiated between all parties.

9.2 Business Process and Information Modeling

9.2.1 Introduction
The ebXML Business Process and Information Meta Model is a mechanism that allows Trading Partners to capture the details for a specific business scenario using a consistent modeling methodology. A Business Process describes in detail how Trading Partners take on roles, relationships and responsibilities to facilitate interaction with other Trading Partners in shared Business Processes. The interaction between roles takes place as a choreographed set of Business Transactions. Each Business Transaction is expressed as an exchange of electronic Business Documents. The sequence of the exchange is defined by the Business Process, messaging and security considerations. Business Documents are composed from re-useable business information components (see “Relationships to Core Components” under 9.2.3 “Interfaces” below). At a lower level, Business Processes can be composed of re-useable Core Processes, and Business Objects can be composed of re-useable Core Components.

The ebXML Business Process and Information Meta Model
supports requirements, analysis and design viewpoints that provide a set of semantics (vocabulary) for each viewpoint and forms the basis of specification of the objects and artifacts that are required to facilitate business process and information integration and interoperability.
An additional view of the Meta Model, the Specification Schema, is also provided to support the direct specification of the nominal set of elements necessary to configure a runtime system in order to executive a set of ebXML business transactions. By drawing out modeling elements from several of the other views, the Specification Schema forms a semantic subset of the ebXML Business Process and Information Meta Model. The Specification Schema is available in two stand-alone representations, a UML profile, and a DTD.
The relationship between the ebXML Business Process and Information Meta Model and the ebXML Specification Schema can be shown as follows:

[image: image12.wmf]ebXML Meta

Model

Specification Schema

(UML)

Specification Schema

(DTD)

Semantic

Subset

Figure 10 - ebXML Meta Model - Semantic Subset

The Specification Schema supports the specification of Business Transactions and the choreography of Business Transactions into Business Collaborations. Each Business Transaction can be implemented using one of many available standard patterns. These patterns determine the actual exchange of messages and signals between the partners to achieve the required legally binding electronic commerce transaction. To help specify the patterns the Specification Schema is accompanied by a set of standard patterns, and a set of modeling elements common to those standard patterns. The full specification, thus, of a business process consists of a business process model specified against the Specification Schema and an identification of the desired pattern(s). This full specification is then the input to the formation of Trading Partner Collaboration Profiles and Collaboration Agreements. This can be shown as follows:

[image: image13.wmf]ebXML Meta

Model

Specification Schema

(UML)

Specification Schema

(DTD)

Semantic

Subset

Interaction Patterns

Common Modeling

Elements

Trading Partner

Document DTD's

Figure 11 - ebXML Meta Model

There are no formal requirements to mandate the use of a modeling language to compose new Business Processes, however, if a modeling language is used to develop Business Processes, it SHALL be the Unified Modeling Language (UML). This mandate ensures that a single, consistent modeling methodology is used to create new Business Processes.

To further facilitate the creation of consistent business processes and information models, ebXML will define a core set of Business Processes in parallel with a Core Library. It is possible that users of the ebXML infrastructure MAY wish to extend this set or use their own Business Processes.

9.2.2 Formal Functionality
The interpretation of a Business Process document instance SHALL be in a form that will allow both humans and applications to read the information. This is necessary to facilitate a gradual transition to full automation of business interactions.

The Business Process SHALL be storable and retrievable in a Registry mechanism. Business Processes MAY be registered in an ebXML Registry in order to facilitate discovery.

To be understood by an application, a Business Process SHALL be expressible in XML syntax. A Business Process SHALL be comprised of an information model or XML-based representation of that model, that is capable of expressing the following types of information:

· Choreography for the exchange of document instances.
· References to Metadata (possibly DTD’s or Schemas) that add structure to business data.
· Definition of the roles for each participant in a Business Process.
· May reference supporting Metadata.
· Provide a context constraint that affects Core Components
· Provide the framework for establishing CPAs
· The domain owner of the Business Process and contact information.

[NOTE: this is not an inclusive list.]

9.2.3 Interfaces
The interface from a Business Process to its associated Business Process and Information Meta Model to other parts of the ebXML Architecture, or to other tools and environments is outside the scope of the ebXML specifications.
Relationship to CPP and CPA

The CPP instance of a Trading Partner defines that partner’s functional and technical capability to support zero, one, or more Business Processes and one or more roles in each process.
The agreement between two Trading Partners defines the actual conditions under which the two partners will conduct business transactions together. Accordingly, the interface between the Business Process and its associated Business Process and Information Meta Model and the CPA is the part of the Business Process document that is instantiated as an XML document that represents the business transactional layer of the Business Process and Information Meta Model. The expression of the sequence of commercial transactions in XML is shared between the Business Process and Trading Partner Information models.
Relationship to Core Components

A Business Process instance MAY specify the constraints for exchanging business data with other Trading Partners. The business data MAY be comprised of components of the ebXML Core Library. Accordingly, a Business Process document SHALL reference the Core Components directly or indirectly using a XML document with metadata (possibly DTD’s or Schemas) that can be uniquely referenced. The mechanism for interfacing with the Core Components and Core Library SHALL be by way of a UID or GUID for each component.
Relationship to ebXML Messaging
A Business Process instance SHALL be capable of being transported from a Registry mechanism to another Registry mechanism via an ebXML Message. It SHALL also be capable of being transported between a Registry and a users application via the ebXML Messaging Service.

Relationship to a Registry System
A Business Process instance intended for use within the ebXML infrastructure SHALL be retrievable through a Registry query, and therefore, each Business Process SHALL contain a UID or GUID.
9.2.4 Non-Normative Implementation Details
The exact composition of a Business Object or a Business Document is guided by a set of contexts derived from the Business Process. The modeling layer of the architecture is highlighted in green in Figure 12 below.

[image: image14.wmf]Business Document

Trading

Partner

Trading

Partner

Business Context

Core Processes

Core/Aggregate

Components

Core Library

Business Processes

Business Objects

Business Library

Figure 12 – ebXML Business Process and Information Modeling layer

ebXML Business Process and Information Models MAY be created following the RECOMMENDED ebXML Modeling Methodology (UML), or MAY be arrived at in any other way, as long as they comply with the ebXML Business Process and Information Meta Models.
9.3 Core Components and Core Library Functionality
9.3.1 Introduction
A Core Component captures information about a real world business concept, and the relationships between that concept, other Business Information, and a contextual description that describes how a Core or Aggregate Component may be used in a particular ebXML eBusiness scenario.

A Core Component can be either an individual piece of business information, or a natural “go-together” family of Business Information that may be assembled into Aggregate Components.
The ebXML Core Components Project Team SHALL define an initial set of Core Components. ebXML users may adopt and/or extend components from the ebXML Core Library.
9.3.2 Formal Functionality
As a minimum set of requirements, Core Components SHALL facilitate the following functionality:

Core Components SHALL be storable and retrievable using an ebXML Registry Mechanism.

Core Components SHALL capture and hold a minimal set of information to satisfy both business and technical needs.

Core Components SHALL be expressible in XML syntax.

A Core Component SHALL be capable of containing:

· Another Core Component in combination with one or more individual pieces of Business Information.

· Other Core Components in combination with zero or more individual pieces of Business Information.
A Core Component SHALL be able to be uniquely identified.
9.3.3 Interfaces
A Core Component MAY be referenced indirectly or directly from a Business Process instance. The Business Process MAY specify a single or group of core components as required or optional information as part of a Business Process.

A Core Component MAY interface with a Registry mechanism by way of being storable and retrievable in such a mechanism.

A Core Component MAY interface with an XML Element from another XML vocabulary by the fact it is bilaterally or unilaterally referenced as a semantic equivalent.

9.3.4 Non-Normative Implementation Details
A Core Component MAY contain attribute(s) or be part of another Core Component, thus specifying the precise context or combination of contexts in which it is used.

The process of aggregating Core Components for a specific business context, shall include a means to identify the placement of a Core Component within another Core Component. It MAY also be a combination of structural contexts to facilitate Core Component re-use at different layers within another Core Component or Aggregate Component. This is referred to as Business Context.

Context MAY also be defined using the Business Process and Information Meta Model, which defines the instances in which the Business Object occurs.

[image: image15.wmf]Business Context

Core Component

Core

Component

Core

Component

Aggregate

Component

Core Component

Aggregate

Context

Context

Core Component

Core

Component

Component

Aggregate

Context

Aggregate

Component

Core

Component

Core

Component

Core

Core Component

Core Component

Core Component

Figure 13 - Business Context defined in terms of Aggregate Context and Aggregate and Core Components

The pieces of Business Information, or Core Components, within a generic Core Component may be either mandatory, or optional. A Core Component in a specific context or combination of contexts (aggregate or business context) may alter the fundamental mandatory/optional cardinality.

·
·

9.4

Registry Functionality
9.4.1 Introduction
An ebXML Registry provides a set of services that enable the sharing of information between users. A Registry is a component that maintains an interface to metadata for a registered item. Access to an ebXML Registry is provided through interfaces (APIs) exposed by Registry Services.

[image: image16.wmf]Content

XML Content Referencing

Access Index

Registry

Interface

Information

Model

Associated References

Registration of

Domain

Classification & Ownership

ebXML conformant XML object

Collections & Versioning

Transport

Layer

Request

Response

Detail Constraints

Industry Domain

Business Process

Details Content

Action Status

Remote ebXML

Registry

Registry Service Interface

Other Registry

Service Interface(s):

UDDI, CORBA

Compatibility Wrappers

Registry

Services

Repository

Access

Syntax

in XML

Figure 14 - Overall Registry / Repository Architecture.
9.4.2 Formal Functionality
A Registry SHALL accommodate the storage of items expressed in syntax using multi-byte character sets.

Each Registry Item, at each level of granularity is defined by the Submitting Organization, MUST be uniquely identifiable. This is essential to facilitate application-to-Registry queries.

A Registry SHALL return either zero or one positive matches in response to a contextual query for a UID or GUID. In such cases where two or more positive results are displayed for such queries, an error message SHOULD be reported to the Registry Authority.

A Registry Item SHALL be structured to allow information associations to identify, name, and describe each registered item, give its administrative and access status, define its persistence and mutability, classify it according to pre-defined classification schemes, declare its file representation type, and identify the submitting and responsible organizations.

The Registry Interface provides an application-to-registry automated access. Human-to-Registry interactions SHALL be built as a layer over a Registry Client (e.g. a Web browser) and not as a separate interface.

The Registry interface SHALL be designed to be transport layer neutral.

The processes supported by the Registry MAY also include:

· A special CPA between the Registry and Registry Clients.

· A set of functional processes involving the Registry and Registry Clients.

· A set of Business Messages exchanged between a Registry Client and the Registry as part of a specific Business Process.

· A set of primitive interface mechanisms to support the Business Messages and associated query and response mechanisms.

· A special CPA for orchestrating the interaction between ebXML compliant Registries.

· A set of functional processes for Registry-to-Registry interactions.

· A set of error responses and conditions with remedial actions.

To facilitate the discovery process, browse and drill down queries MAY be used for human interactions with a Registry (e.g. via a Web browser). A user SHALL be able to browse and traverse the content based on the available Registry classification schemes.

Registry messages SHALL exist to create, modify, and delete Registry Items and their metadata.

Appropriate security protocols MAY be deployed to offer authentication and protection for the Repository when accessed by the Registry.

9.4.3 Interfaces
ebXML Messaging:

The query syntax used by the Registry access mechanisms is independent of the physical implementation of the backend system. The ebXML Messaging Service serves as the transport mechanism for all communications into and out of the Registry.

Business Process:
Business Processes MAY be published and retrieved via ebXML Registry services.

Core Components:
Core Components MAY be published and retrieved via ebXML Registry services.

Any item with metadata: XML elements provide standard metadata about the item being managed through ebXML Registry services. [NOTE: The metadata is separate from the item itself, thus allowing the ebXML Registry to catalog arbitrary items.] Since ebXML Registries are distributed each Registry MAY interact with and cross-reference another ebXML Registry.

9.4.4 Non-Normative Implementation Details
The Business Process and Information Model within a Registry MAY be stored according to various classification schemes.

The existing ISO11179/3 work on Registry implementations MAY be used to provide a model for the ebXML Registry implementation.

Registry Items and their metadata MAY also be addressable as XML based URI references using only HTTP for direct access.
Examples of extended Registry services functionality MAY be deferred to a subsequent phase of the ebXML initiative. This MAY include: transformation services, workflow services, quality assurance services and extended security mechanisms.

A Registry service MAY have multiple deployment models as long as the Registry interfaces are ebXML compliant.

The assignment of a GUID to Registry Items MAY benefit from the use of a standard algorithm such as the DC 128 GUID algorithm.

The Business Process and Information Model for an ebXML Registry service MAY be an extension of the existing OASIS Registry Information Model, specifically tailored for the storage and retrieval of business information, whereas the OASIS model is a superset designed for handling extended and generic information content.

9.5 Messaging Service Functionality

9.5.1 Introduction
The ebXML Message Service mechanism SHALL provide a standard way to exchange business messages among ebXML Trading Partners. The ebXML Messaging Service provides a reliable means to exchange business messages without relying on proprietary technologies and solutions. An ebXML Message contains structures for a Header (necessary for routing and delivery) and a Payload section (necessary for transport).

The ebXML Messaging Service is conceptually broken down into three parts: (1) an abstract Service Interface, (2) functions provided by the Messaging Service Layer, and (3) the mapping to underlying transport service(s). The relation of the abstract interface, Messaging Service Layer, and transport service(s) are shown in Figure 15 below.

[image: image17.wmf]Abstract ebXML Messaging Service Interface

EbXML Messaging Service Layer maps

the abstract interface to the underlying

transport service

Transport Service(s)

Figure 15 - ebXML Messaging Service

The following diagram depicts a logical arrangement of the functional modules that exist within the ebXML Messaging Services architecture. These modules are arranged in a manner to indicate their inter-relationships and dependencies. This architecture diagram illustrates the flexibility of the ebXML Messaging Service, reflecting the broad spectrum of services and functionality that MAY be implemented in an ebXML system.

[image: image18.wmf]HTTP

SMTP

IIOP

FTP

…

ebXML Applications

Messaging Service Interface

Messaging Service

Authentication, authorization and

repudiation services

Header Processing

Encryption, Digita

l Signature

Message Packaging Module

Delivery Module

Send/Receive

Transport Mapping and Binding

Figure 16 - The Messaging Service Architecture

9.5.2 Formal Functionality
The ebXML Messaging Service SHALL provide a secure, consistent and reliable mechanism to exchange ebXML Messages between users of the ebXML infrastructure over various transport Protocols (possible examples include SMTP, HTTP/S, FTP, etc.).
The ebXML Messaging Service SHALL prescribe formats for all messages between distributed ebXML Components including Registry mechanisms and compliant user Applications. It SHALL also utilize and enforce the "rules of engagement" defined in a Collaboration Protocol Agreement (CPA).
The ebXML Messaging Service SHALL NOT place any restrictions on the content of the payload.

The ebXML Messaging Service SHALL support simplex (one-way) and request/response (either synchronous or asynchronous) message exchanges.
The ebXML Messaging Service SHALL meet business needs, consequently it SHALL support sequencing of payloads in instances where multiple payloads or multiple messages are being used.
The ebXML Messaging Service Layer SHALL enforce the "rules of engagement" as defined by two parties in a Collaboration Protocol Agreement (including security and Business Process functions related to message delivery). The Collaboration Protocol Agreement defines the acceptable behavior by which each Party agrees to abide. The definition of these ground rules can take many forms including formal Collaboration Protocol Agreements, interactive agreements established at the time a business transaction occurs (e.g. buying a book online), or other forms of agreement. There are Messaging Service Layer functions that enforce these ground rules. Any violation of the ground rules result in an error condition, which is reported using the appropriate means.

The ebXML Messaging Service SHALL perform all security related functions including:

· Identification

· Authentication (verification of identity)

· Authorization (access controls)

· Privacy (encryption)

· Integrity (message signing)

· Non-repudiation

· Logging
9.5.3 Interfaces
The ebXML Message Service provides ebXML with an abstract interface whose functions, at an abstract level, include:

· Send – send an ebXML Message – values for the parameters are derived from the ebXML Message Headers.

· Receive – indicates willingness to receive an ebXML Message.

· Notify – provides notification of expected and unexpected events.

· Inquire – provides a method of querying the status of the particular ebXML Message interchange.
The ebXML Messaging Service SHALL interface with internal systems including:

· Routing of received messages to internal systems
· Error notification

The ebXML Messaging Service SHALL help facilitate the interface to an ebXML Registry.

9.5.4 Non-Normative Implementation Details

ebXML Message Structure and Packaging

Figure 17 below illustrates the logical structure of an ebXML Message.

[image: image19.wmf] Transport Envelope (SMTP, HTTP, etc.)

 ebXML Message Envelope (MIME multipart/related)

 ebXML Header Envelope

 ebXML Header Document

ebXML Payload Envelope

Payload Document(s)

ebXML

Payload

Container

Manifest

Header

ebXML

Header

Container

Figure 17 - ebXML Message Structure

An ebXML Message MAY consist of an OPTIONAL transport Protocol specific outer Communication Protocol Envelope and a Protocol independent ebXML Message Envelope. The ebXML Message Envelope MAY be packaged using the MIME multipart/related content type. MIME is used as a packaging solution because of the diverse nature of information exchanged between Partners in eBusiness environments. For example, a complex B2B business transaction between two or more Trading Partners might require a payload that contains an array of business documents (XML or other document formats), binary images, or other related Business Objects.
10 Conformance
10.1 Introduction

This clause specified the general framework, concepts and criteria for Conformance to ebXML, including an overview of the conformance strategy for ebXML, guidance for addressing conformance in each ebXML technical specification, and the conformance clause specific to the Technical Architecture specification. Except for the Technical Architecture Specification, this clause does not define the conformance requirements for each of the ebXML technical specifications – the latter is the purview of the technical specifications.

The objectives of this section are to:

a) Ensure a common understanding of conformance and what is required to claim conformance to this family of specifications;

b) Ensure that conformance is consistently addressed in each of the component specifications;

c) Promote interoperability and open interchange of Business Processes and messages;

d) Encourage the use of applicable conformance test suites as well as promote uniformity in the development of conformance test suites.

Conformance to ebXML is defined in terms of conformance to the ebXML infrastructure and conformance to each of the technical specifications for ebXML. The primary purpose of conformance to ebXML is to increase the probability of successful interoperability between implementations and the open interchange of XML business documents and messages. While conformance is a necessary condition, it is not on its own a sufficient condition to guarantee interoperability. Successful interoperability and open interchange is more likely to be achieved if implementations conform to the requirements in the ebXML specifications.

10.2 Conformance to ebXML

ebXML Conformance is defined as conformance to an ebXML system that is comprised of all the architectural components of the ebXML infrastructure and satisfies at least the minimum conformance requirements for each of the ebXML technical specifications, including the functional and interface requirements in this Technical Architecture specification.

In the context of ebXML, an implementation is said to exhibit conformance if it complies with the requirements of each applicable ebXML technical specification. The conformance requirements are stated in the conformance clause of each technical specification of ebXML. The conformance clause specifies explicitly all the requirements that have to be satisfied to claim conformance to that specification. These requirements MAY be applied and grouped at varying levels within each specification.

10.3 Conformance to the Technical Architecture Specification

This section details the conformance requirements for claiming conformance to the Technical Architecture specification.

In order to conform to this specification, each ebXML technical specification:

a) SHALL support all the functional and interface requirements defined in this specification that are applicable to that technical specification;

b) SHALL NOT specify any requirements that would contradict or cause non-conformance to ebXML or any of its components;

c) MAY contain a conformance clause that adds requirements that are more specific and limited in scope than the requirements in this specification;

d) SHALL only contain requirements that are testable.

A conforming implementation SHALL satisfy the conformance requirements of the applicable parts of this specification and the appropriate technical specification(s).

10.4 General Framework of Conformance Testing

The objective of conformance testing is to determine whether an implementation being tested conforms to the requirements stated in the relative ebXML specification. Conformance testing enables vendors to implement compatible and interoperable systems built on the ebXML foundations. EbXML implementations and Applications SHALL be tested to available test suites to verify their conformance to ebXML Specifications.

Publicly available test suites from vendor neutral organizations such as OASIS and NIST SHOULD be used to verify the conformance of ebXML Implementations, Applications, and Components claiming conformance to ebXML. Open source reference implementations MAY be available to allow vendors to test their products for interface compatibility, conformance, and interoperability.

11.0 Security Considerations

11.1 Introduction

A comprehensive Security Model for ebXML will be expressed in a separate document. The Security Model SHALL be applied to the entire ebXML Infrastructure, with the underlying goal of best meeting the needs of users of ebXML.

The Security Model SHALL comply with security needs specified in the ebXML Requirements Document.

Appendix A: Example ebXML Business Scenarios
Definition
This set of Scenarios defines how ebXML compliant software could be used to implement popular, well-known eBusiness models.
Scope
These Scenarios are oriented to properly position ebXML specifications as a convenient mean for SME’s to properly conduct eBusiness over the Internet using open standards. They bridge the specifications to real life uses.
Audience
Companies planning to use ebXML compliant software will benefit from these scenarios because they will show how these companies MAY be able to implement popular business scenarios onto the ebXML specifications.
List
a) Two Trading Partners set-up an agreement and run the associated electronic exchange.

b) Three or more Trading Partners set-up a Business Process implementing a supply-chain and run the associated exchanges

c) A company sets up a Portal which defines a Business Process involving the use of external business services.

d) Three or more Trading Partners engage in multi-Party Business Process and run the associated exchanges.

Scenario 1

Two Trading Partners set-up an agreement and run the associated exchange.

In this scenario:

· Each Trading Partner defines its own Trading Partner Profile (TPP). Each TPP references:

· One or more existing Business Process found in an ebXML Registry system.
· One of more Business Message definitions. Each definition is built from reusable Components (Core and/or Aggregate Components) found in the ebXML Registry system.
Each TPP defines:

· The commercial transactions that the Trading Partner is able to support.

· The underlying protocol (like HTPP, SMTP etc) and the technical properties (such as encryption, validation, authentication, digital signing) that the Trading Partner supports in the engagement.

· The Trading Partners acknowledge each other’s TPP and create a Collaboration Protocol Agreement (CPA). The CPA references:

· The relevant TPP’s.
· The Legal terms and conditions related to the exchange

· The parties implement the respective part of the Profile. This is done:

· Either by creating/configuring a Business Service Interface.

· Or properly upgrading the legacy software running at their side

· In both cases, this step is about:

· Plugging the legacy into the ebXML technical infrastructure as specified by the ebXML Messaging Services Specification.

· Granting that the software is able to properly engage the stated conversations

· Granting that the exchanges semantically conform to the agreed upon message definitions

· Granting that the exchanges technically conform with the underlying ebXML Messaging Service.

· The Trading Partners start exchanging messages and performing the agreed upon commercial transactions.

Scenario 2:

Three or more Trading Partners set-up a Business Process implementing a supply-chain eBusiness scenario.

The simple case of a supply-chain involving two Trading Partners can be reconstructed from the Scenario 1.

Here we are dealing with situations where more parties are involved. We consider a Supply Chain of the following type:

What fundamentally differs from Scenario 1 is that Trading Partner 2 is engaged at the same time with two different Trading Partners. The assumption is that the “state” of the entire Business Process is managed by each Trading Partner, i.e. that each Trading Partner is fully responsible of the commercial transaction involving it (Trading Partner 3 only knows about Trading Partner 2, Trading Partner 2 knows about Trading Partner 3 and Trading Partner 1, Trading Partner 1 knows about Trading Partner 2).

In this scenario:

· Each Trading Partner defines its’ own TPP. Each TPP references:

· One or more existing Business Process found in the ebXML Registry system.
· One of more Business Message definitions. Each definition is built from reusable Components (Core and/or Aggregate Components) found in the ebXML Registry.
· Each TPP defines:

· The commercial transactions that the Trading Partner is able to engage into
Trading Partner 2 must be able to support at least 2 commercial transactions.

· The underlying protocol (like HTPP, SMTP etc) and the technical properties (such as encryption, validation, authentication, and digital signing) that the Trading Partner supports in the engagement.

· The technical requirements for the exchanges with Trading Partner 1 and Trading Partner 3 MAY be different. In such case, Trading Partner 2 must be able to support different protocols and/or properties.

· The Trading Partners acknowledge each other TPP and create the relevant CPA’s (at least 2 in this scenario).

· Each CPA references:

· The relevant CPP’s for each respective Trading Partner.
· The terms and conditions related to the mutually agreed upon business exchange

· Trading Partner 2 is engaged in 2 CPA’s. Each Trading Partner implements their own respective part of each CPA. This is done:

· Either by creating/configuring a Business Service Interface.

· Or properly upgrading the legacy software running at their side . In both cases, this step is about:

· Plugging the Legacy into the ebXML technical infrastructure as specified by the TR&P

· Granting that the software is able to properly engage the stated conversations

· Granting that the exchanges semantically conform to the agreed upon Business Message definitions

· Granting that the exchanges technically conform with the underlying ebXML Messaging Service.

· Trading Partner 2 MAY need to implement a complex Business Service Interface in order to be able to engage with different Trading Partners.

· The Trading Partners start exchanging messages and perform the agreed upon commercial transactions.

· Trading Partner 3 places an order with Trading Partner 2.

· Trading Partner 2 (eventually) places an order with Trading Partner 1.

· Trading Partner 1 fulfills the order.

· Trading Partner 2 fulfills the order.

Scenario 3

A Company sets up a Portal which defines a Business Process involving the use of external business services

This a the scenario describing a Service Provider. A “client” asks the Service Provider for a service. The Service Provider fulfills the request by properly managing the exchanges with other partners, which provide information to build the final answer.

In the simplest case, this scenario could be modeled as follows:

This is an evolution of Scenario 2. The Description of this scenario is omitted to minimize the duplication of processes explained in detail in Scenario 2.

Scenario 4

Three or more Trading Partners engage in eBusiness using Business Processes that were created by each respective Trading Partner and run the associated business exchanges.

This Scenario is about 3 or more Trading Partners having complex business relationships. An example of this is the use of an external delivery service for delivering goods.

In this Scenario, each Trading Partner is involved with more than one other Trading Partner but the relationship is not linear. The product ordered by the client from the Service Provider will be delivered by a 3rd Trading Partner.
In this scenario:

· Each Trading Partner defines its own CPP.
Each CPP references:

· One or more existing Business Process found in the ebXML Registry
· One of more Business Message definitions. Each definition is built from reusable Components (Core and/or Aggregate Components) found in the ebXML Registry

Each CPP defines:

· The Commercial Transactions that the Trading Partner is able to engage into
In this case, each Trading Partner must be able to support at least 2 commercial transactions.

· The technical protocol (like HTPP, SMTP etc) and the technical properties (such as encryption, validation, authentication, and digital signing) that the Trading Partner supports in the engagement.
In case the technical infrastructure underlying the different exchanges differs, each Trading Partner must be able to support different protocols and/or properties. (an example is that the order is done through a Web site and the delivery is under the form of an email).

· The Trading Partners acknowledge each other profile and create a Partner CPA.
Each Trading Partner, in this Scenario, must be able to negotiate at least 2 CPA’s.

· The CPA references:

· The relevant CPP’s
· The terms and conditions related to the exchange

· Each Trading Partner is engaged in 2 CPA’s.

· The Trading Partners implement the respective part of the Profile. This is done:

· Either by creating/configuring a Business Service Interface.

· Or properly upgrading the legacy software running at their side

· In both cases, this step is about:

· Plugging the application into the ebXML technical infrastructure as specified by the ebXML Messaging Service.

· Granting that the software is able to properly engage the stated business scenarios.

· Granting that the exchanges semantically conform to the agreed upon Business Message definitions

· Granting that the exchanges technically conform with the underlying ebXML Messaging Services Specification.

· All Trading Partners MAY need to implement complex Business Service Interfaces to accommodate the differences in the CPA’s with different Trading Partners.

· The Trading Partners start exchanging messages and performing the agreed upon commercial business transactions.

· The Client places an Order at the Service Provider

· The Service Provider acknowledges the Order with the Client

· The Service Provider informs the mail delivery service about a product to be delivered at the Client

· The Mail Delivery Service delivers the product to the Client

· The Clients notifies the Service Provider that the product is received.

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

Copyright Statement

Copyright © ebXML 2000. All Rights Reserved.

 This document and translations of it MAY be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as REQUIRED to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Mail Delivery Company

Service Provider

Client

Trading

Partner 3

Trading Partner 2

Trading

Partner 1

Service Provider

Client

Trading Partner 3

Trading Partner 2

Trading Partner 1

Copyright © ebXML 2001. All Rights Reserved.

Technical Architecture Specification

Page 40 of 40
Copyright © ebXML 2001. All Rights Reserved.

_1038819232.vsd

_1038819388.vsd

_1038980813.vsd

_1038982325.vsd

_1038820123.vsd

_1038820381.vsd

_1038819348.vsd

_1038207191.vsd

_1038227176.vsd

_1038819206.vsd

_1038388001.vsd

_1038214139.vsd

_1038224284.vsd

_1035296934.doc

Collaboration Protocol Agreements

Business Collaborations

Other

In scope

for ebXML

_1037546109.vsd

_1033038653.doc

Possibilities

Capabilities

Agreements

_1033210590.bin

