[image: image31.jpg]Creating A Single Global Electronic Market

ebXML Business Process Specification Schema

Version 0.87

Context/Metamodel Group

of the CC/BP Joint Delivery Team
01/05/2001

1 Status of this Document

This document is a working DRAFT for the eBusiness community. Distribution of this document is unlimited. This document will go through the formal Quality Review Process as defined by the ebXML Requirements Document. The formatting for this document is based on the Internet Society’s Standard RFC format.

This version:

EbXML_BPschema_0.87

Latest version:

EbXML_BPschema_0.87

Previous version:

EbXML_BPschema_0.87
ebXML BP/CoreComponents metamodel participants

We would like to recognize the following for their significant participation to the development of this document.

Team Lead:

Paul Levine, Telcordia

Editors:

Jim Clark, Edifecs

Karsten Riemer, Sun Microsystems

Cory Casanave, Data Access Technologies

Participants:

Antoine Lonjon, Mega

J.J. Dubray, Excelon

Bob Haugen, Logistical Software

Bill McCarthy, Michigan State University

Paul Levine, Telcordia

Brian Hayes, CommerceOne

Betty Harvey, Electronic Commerce Connection

Antonio Carrasco, Data Access Technologies

Table of Contents

i1
Status of this Document

ii2
ebXML BP/CoreComponents metamodel participants

iii3
Table of Contents

vi4
Introduction

viExecutive Summary

14.1
Summary of Contents of Document

14.2
Audience

14.3
Related Documents

14.4
Prerequisites

15
Design Objectives

15.1
Goals/Objectives/Requirements/Problem Description

25.2
Caveats and Assumptions

25.3
Metamodel Architecture

46
System Overview

5UML Specification Schema

5DTD Specification Schema

5Business Process Interaction Patterns

5Common Interaction Pattern Modeling Elements

5Production Rules

56.1
What the ebXML Business Process Specification Schema Does

86.2
How the ebXML Business Process Specification Schema Works

96.2.1
Core Business Transaction Semantics

116.2.2
Response patterns.

126.2.3
Timeouts

136.2.4
ControlException

136.2.5
Business Protocol Exceptions (a.k.a. ProcessException)

146.2.6
Security Parameters

176.2.7
Concurrency

176.2.8
Reliability

176.2.9
Synchronous or Asynchronous

176.3
Where the ebXML Specification Schema May Be Implemented

187
Specification Element Overview

187.1
Business Collaborations

187.1.1
MultiPartyCollaboration

187.1.2
BusinessPartner

197.1.3
Performs

197.1.4
AuthorizingRole

207.1.5
BinaryCollaboration

217.1.6
BusinessActivity

217.1.7
BusinessTransactionActivity

227.1.8
CollaborationActivity

227.2
Business Transactions

227.2.1
BusinessTransaction

237.2.2
RequestingBusinessActivity

247.2.3
RespondingBusinessActivity

257.3
Message Exchange

257.3.1
DocumentEnvelope

267.3.2
DocumentSet

267.3.3
Content

277.4
Document Model

277.4.1
BusinessDocument

277.4.2
StructuredDocument

287.4.3
UnstructuredDocument

287.4.4
InformationEntity

297.4.5
AggregateInformationEntity:

307.4.6
BasicInformationEntity:

307.4.7
Attribute:

317.5
Choreography within Collaborations.

317.5.1
BusinessState

317.5.2
Transition

327.5.3
Start

327.5.4
TerminalState

327.5.5
Success

327.5.6
Failure

337.5.7
SynchronizationState

337.5.8
Guard

337.6
Definition and Scope

347.7
Collaboration Specification Rules

347.7.1
Well-formedness Rules

368
Specification Schema – (DTD)

368.1
Documentation for the DTD

578.2
DTD

628.3
XML to UML cross-reference

648.4
Scoped Name Reference

658.5
Sample XML document against above DTD

739
Common Modeling Elements

739.1
Datatyping

739.1.1
Global Datatypes

769.1.2
Local Datatypes

769.2
Signal structures

769.2.1
ReceiptAcknowledgment DTD

809.2.2
AcceptanceAcknowledgement DTD

839.2.3
Exception Signal DTD

8610
Production Rules

8711
Business Service Interaction Patterns

8711.1
Service Component Interaction Pattern

8811.1.1
Service-Service

9311.1.2
Agent-Service-Service

9811.1.3
Service-Service-Agent

10311.1.4
Service-Agent-Service

10911.1.5
Agent-Service-Agent

11412
References

11413
Disclaimer

11514
Contact Information

116Copyright Statement

Introduction

Executive Summary

The ebXML Specification Schema provides a standard framework by which business systems may be configured to support execution of business transactions. It is based upon prior UN/CEFACT work, specifically the metamodel behind the UN/CEFACT Unified Modeling Methodology (UMM) defined in the N90 specification.

The current version of the specification schema facilitates the infrastructure release of ebXML's Transport/Routing/Packaging (TRP), Trading Partner (TP), and Registry/Repository (RegRep) specifications.

A subsequent version will address additional features such as the semantics of economic exchanges and contracts, multi-party choreography, and context based content.

1.1 Summary of Contents of Document

This document specifies a specification schema for execution of business processes.

This document describes the Specification Schema, both in its UML form and in its DTD form. To facilitate easy and consistent specification of the required legally binding electronic commerce transaction this document also provides a set of standard patterns, and a set of modeling elements common to those standard patterns.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [Bra97].

1.2 Audience

The primary audience is business process analysts. We define a business process analyst as someone who interviews business people and as a result documents business processes in unambiguous syntax. The audience is not business application developers.

1.3 Related Documents

As mentioned above, other documents provide detailed definitions of some of the components of The ebXML Specification Schema and of their inter-relationship. They include ebXML Specifications on the following topics:

ebXML Technical Architecture, version 1.0

1.4 Prerequisites

It is assumed that the audience will be familiar with or have knowledge of the following technologies and techniques:

· Business process modeling techniques and principles

· The UML syntax and semantics, the UML metamodel and the UML extension mechanism

· The eXtended Markup Language (XML)

2 Design Objectives

2.1 Goals/Objectives/Requirements/Problem Description

Business process models specify interoperable business processes that allow business partners to collaborate.

The ebXML Specification Schema provides for the nominal set of specification elements necessary to configure a runtime system in order to execute collaboration consisting of a set of ebXML business transactions. This schema facilitates the infrastructure release of ebXML’s TRP, TP, and RegRep specifications.

The Specification Schema is available in two stand-alone representations, a UML profile, and a DTD. Users of the Specification Schema will create business process specifications as either UML diagrams, or eXtended Markup Language (XML) documents.

The Specification Schema supports the specification of Business Transactions and the choreography of Business Transactions into Business Collaborations. Each Business Transaction can be implemented using one of many available standard patterns. These patterns determine the actual exchange of messages and signals between the partners to achieve the required legally binding electronic commerce transaction.

2.2 Caveats and Assumptions

This specification is designed to specify the run time aspects of a business collaboration. It represents one view of the overall metamodel as follows:

2.3 Metamodel Architecture

The ebXML Business Process and Information Meta Model is a description of business semantics that allows Trading Partners to capture the details for a specific business scenario using a consistent modeling methodology. A Business Process describes in detail how Trading Partners take on roles, relationships and responsibilities to facilitate interaction with other Trading Partners in shared Business Processes. The interaction between roles takes place as a choreographed set of Business Transactions. Each Business Transaction is expressed as an exchange of electronic Business Documents. The sequence of the exchange is defined by the Business Process, messaging and security considerations. Business Documents are composed from re-useable business information components. At a lower level, Business Processes can be composed of re-useable Core Processes, and Business Objects can be composed of re-useable Core Components.

The ebXML Business Process and Information Meta Model supports requirements, analysis and design viewpoints that provide a set of semantics (vocabulary) for each viewpoint and forms the basis of specification of the semantics and artifacts that are required to facilitate business process and information integration and interoperability.
An additional view of the metamodel, the Specification Schema, is also provided to support the direct specification of the nominal set of elements necessary to configure a runtime system in order to executive a set of ebXML business transactions. By drawing out modeling elements from several of the other views, the Specification Schema forms a semantic subset of the ebXML Business Process and Information Meta Model. The Specification Schema is available in two stand-alone representations, a UML profile, and a DTD.

The relationship between the ebXML Business Process and Information Meta Model and the ebXML Specification Schema can be shown as follows:

[image: image1.jpg]

The Specification Schema supports the specification of Business Transactions and the choreography of Business Transactions into Business Collaborations. Each Business Transaction can be implemented using one of many available standard patterns. These patterns determine the actual exchange of messages and signals between the partners to achieve the required legally binding electronic commerce transaction. To help specify the patterns the Specification Schema is accompanied by a set of standard patterns, and a set of modeling elements common to those standard patterns. The full specification, thus, of a business process consists of a business process model specified against the Specification Schema and an identification of the desired pattern(s). This full specification is then the input to the formation of Trading Partner Collaboration Profiles and Collaboration Agreements.

This can be shown as follows:

[image: image2.jpg]

As the figure shows, the architecture of the ebXML Specification Schema consists of the following functional components (shown inside the dotted box):

UML Specification Schema,

DTD specification Schema,

Business Process Interaction Patterns,

Common Modeling Elements for Business Process Interaction Patterns

and the Production Rules needed for the generation of UML specification into a XML Specification Document (shown as the two-way arrow between the UML and the DTD versions of the Specification Schema

Together these components allow you to fully specify all the run time aspects of a business process and the accompanying information model.

This run time business process and information specification is then incorporated into Trading Partner Collaboration Profiles and Collaboration Agreements. Within these profiles and agreements are then added further technical parameters resulting in a full specification of the run-time software at each trading partner.

3 System Overview

Each of the components in the Specification Schema is described below:

UML Specification Schema

The UML Specification Schema is a semantic subset of the metamodel behind UMM as specified in UN/CEFACT TMWG’s N90, expressed as a standalone UML profile. The UML Specification Schema guarantees that a XML Specification Document is analytically, semantically and functionally equivalent to one arrived at by modeling the same subset through the use of UMM.

DTD Specification Schema

The DTD Specification Schema is an isomorphic definition of the UML Specification Schema. The DTD Specification Schema seeks to guarantee that a XML Specification Document is analytically, semantically and functionally equivalent to a UML Specification Model of the same business process.

This version of the specification is expressed as a DTD, and some of the constraints may need to be stated separately, in plain text. It is the intent to migrate to W3C schema, as soon as it becomes available as a standard. At that point such constraints, where possible, will be built into the schema.
Business Process Interaction Patterns

ebXML business service interfaces are configured to execute the business processes defined against the specification schema. They do so by exchanging ebXML messages and signals. The Business Process Interaction Patterns define the permissible set of message sequences as determined by the type of business transaction defined, type of roles which are participating in the transaction and the timing policy specified in the transactions.

Common Interaction Pattern Modeling Elements

The Common Modeling Elements specifies the modeling elements, and their interrelationships, that are used to express Interaction Pattern Specification

Production Rules

The Specification Production rules provide the prescriptive definition necessary to translate a UML Specification Model into a XML Specification Document and the well-formed rules necessary to populate a XML Specification Document.

3.1 What the ebXML Business Process Specification Schema Does

The UML Specification Schema provides the semantics, properties and elements necessary to define Business Collaborations, Business Transactions, Message Exchanges, Document Definitions, and Choreography within Collaborations.

1. Business Collaborations

A Business Collaboration is a set of interactions between business partners. Each partner plays one or more roles in the collaboration. Binary Business Collaborations are between two roles only. Binary Collaborations are expressed as a set of BusinessActivities between the two roles. The BusinessActivities can be ‘atomic’, i.e. the activity of conducting an atomic BusinessTransaction, or ‘composite’, i.e. the activity of conducting another Binary Collaboration. In either case the activities can be choreographed as per below. Binary Collaborations can be synthesized into multi-party Collaborations. In this release there is no choreography among the binary collaborations making up a multiparty collaboration.

2. Business Transactions

A business transaction is an atomic unit of work in a business collaboration. A business transaction is conducted between two business partners playing opposite roles in the transaction. A business transaction always starts with a requesting activity (carried out by the requesting role). This activity results in the sending of a request. This request serves to transition control to the responding role who then enters a responding activity. During or upon completion of the responding activity zero, zero or one response is sent. Optionally one or more signals are also sent from the responding role to the requesting role. Part of the pattern of a business transaction determines when control transitions back to the requesting role.

A business transaction will always either succeed or fail. If it succeeds it is legally binding for the two partners. If it fails it is null and void, and each partner must relinquish any mutual claim established by the transaction. This can be thought of as ‘rolling back’ the business transaction upon failure.

A business transaction activity defines the use of a business transaction in a collaboration. Each business transaction activity, thus, represents an atomic unit of work defined by the business transaction it refers to (uses) within the collaboration.

A business collaboration choreographs one or more business transaction activities that are conducted amongst two or more parties. A business collaboration is not a transaction and should be used in cases where transaction rollback is inappropriate. For example, a buying partner may request a purchase order creating from a selling partner. The selling partner may partially accept purchase order and thus complete the transaction but may only return shipping information on part of the order. The buying partner is sent any number of later notifications regarding the outstanding portions of the order until the order is completely reconciled.

3. Message Exchanges

A business transaction is defined as a set of business documents and signals exchanged between the requesting and responding roles. The documents are enclosed in named document envelopes. One envelope passes from requesting activity to responding activity and zero or one passes back from the responding activity to the requesting activity. In each document envelope is exactly one DocumentSet. A DocumentSet can contain be one or more business documents. The document set is in essence is the payload in the ebXML TRP message.

4. Document Definition

An information entity is the basic building block for information structure. An information entity can be basic, aggregate, or specialized as a BusinessDocument.

Aggregate information entities can have attributes which can be other information entities.

A business document is the only type of information entity that can be contained in a DocumentSet for exchange between parties. A business document is always of a type called ebxmlDocumentType which can be unambiguously mapped to MIME types.

5. Choreography

The choreography of business transactions within business collaborations, and the recursive nesting of business collaborations, is defined in terms of states, and transitions between those states. States include a start state, a completion state (which comes in a success and failure flavor), the activity state (in-process), and a synchronization state. Transitions are between states. Transitions can be gated by Guards. Guards can refer to the type of document set received in the document envelopes that caused the transition, and/or to postconditions on the prior state.

3.2 How the ebXML Business Process Specification Schema Works

 The following picture shows the above semantics as a UML class diagram:

[image: image3.wmf]Result

PostCondition : Status

Start

Success

Failure

Terminal State

Sync State

MultiPartyColl

aboration

Business

Partner

*

1

+partners

*

+Collaboration

1

BusinessTransactionActivity

Performs

*

1

+performers

*

+performedBy

1

BusinessActivity

CollaborationActivity

Business Transaction

1

*

+uses

1

+activities

*

Authorizin

gRole

1

*

+role

1

+performers

*

1

*

+to

1

*

1

*

+from

1

*

BinaryCollaboration

1

*

+uses

1

+usedBy

*

2

1

+role

2

+collaboration

1

RequestingBusinessActivity

1

1

+requester

1

+transaction

1

0..*

0..*

+requesting

0..*

+requesters

0..*

RespondingBusinessActivity

1

1

+responder

1

+transaction

1

0..*

0..*

+responders

0..*

+responding

0..*

BusinessState

*

1

+states

*

+collaboration

1

Document Envelope

1

1

1

+requesting

1

1

1

1

+Responding

1

Transition

*

1

+exiting

*

1

out

1

*

1

+entering

*

in

Document Set

*

*

+Potential Contents

*

*

Guard

1

0..1

1

+Guard

0..1

0..1

+requires

0..1

The following picture shows the ebXML document model as a UML class diagram:

[image: image4.wmf]Basic Information Entity

Integers, Strings,

Dates and things

that fit in XML

Pictures,

Movies, EDI

messages...

isLink makes an

xPointer (External

value) instead of an

embeded value

Business

Information

Structured

Document

Unstructured

Document

Abstract Attribute

name : String

required : Boolean

Aggregate Information Entity

0..1

*

+supertype

0..1

+subtype

*

Information Entity

Attribute

*

1

+attribtues

*

+owner

1

1

*

+type

1

*

Documen

t Set

ebxmlDocument

Content

*

1

+attributes

*

+owner

1

1

*

+type

1

*

3.2.1 Core Business Transaction Semantics

Before going through the semantics of each of the modeling elements in the class diagram, it is necessary to understand the semantics of the core concept, the business transaction.

The concept of a business transaction and the semantics behind it are central to predictable, enforceable commerce. In the ebXML model the business transaction always has the following semantics:

1. The business transaction is a unit of work. All of the interactions in a business transaction must succeed or the transaction must be rolled back to a defined state before the transaction was initiated.

2. A business transaction is conducted between two business partners playing opposite roles in the transaction.

3. The business transaction is always viewed from the viewpoint of the requesting role

4. A business transaction always starts with a requesting activity (carried out by the requesting role). This activity results in the sending of a request .

5. The request serves to transition control to the responding role.

6. The responding role then enters a responding activity. During or upon completion of the responding activity zero or one response is sent.

7. The response (if any) transitions control back to the requesting role. If no response is sent then control transitions back to the requesting role based on the receipt of a signal.
8. A receiptAcknowledgement signal is required for all business transactions. The receiptAcknowledgement signal is sent from the responding role to the requesting role upon receipt, and optionally validation of the request.
9. All business transactions succeed or fail. Success or failure depends on:
a. the receipt or non-receipt of the confirming response or signals
b. the expiration of time-outs
c. the occurrence of a business exception
d. the occurrence of a control exception
Even though all business transactions are governed by the above semantics, business transactions can be carried out in many distinctly and succinctly defined patterns and with different security and exchange characteristics.

The groups of specification elements that determine the exact pattern of a business transaction are:

1. Response patterns

2. Time-outs

3. Control exceptions

4. Business protocol exceptions

5. Security parameters.

6. Concurrency

7. Reliability

8. Synchronous or asynchronous

3.2.2 Response patterns.

There is always only one request.

During or upon completion of the responding activity zero or one response document set is sent. Optionally one or more signals are also sent from the responding role to the requesting role.

Therefore business transaction response patterns vary based on whether zero or one response is required and on how many signals are required.

In addition to the actual response document set, also called Substantive acceptance there are two possible signal types:

· Receipt acknowledgement – this is a required signal in all business transactions.

· Acceptance acknowledgement (Non-Substantive) – this may or may not be required, depending on the particular business transaction.

The Substantive acceptance will always result in a successful completion of the business transaction. The other two are interim messages, and are of a type called business signal messages.

The reason these are of business concern is that in today’s fast paced supply chains, companies are being forced to reduce lead times by proactively reacting to signals from their partners. So for instance a company my decide to take proactive action based merely on receiptacknowledgement, or non-substantive acceptance.

The formal description of the two business signals above is:

Receipt acknowledgement business signal. The UN/EDIFACT model Trading Partner Agreement (TPA) suggests that a partners should agree on the point at which a message can be "said" to be properly received and this point should be when a receiving partner can "read" a message. They suggest this should be the point after which a message passes a structure/ schema validity check. Note that this is not a necessary condition for verifying proper receipt, only accessibility is. The property isIntelligibleCheckRequired allows partners to agree that a message should be “readable” before its receipt is verified
.

Acceptance Acknowledgement business signal. The UN/EDIFACT model TPA suggests that partners should agree on the point at which a message can be "said" to be accepted for business processing and this point should be after the contents of a business document have passed a business rule validity check. For example, if I order 100000000000 copies of a single book from Amazon I am assuming it will fail some business rule check. These business rules are often found in trading contracts.

The specification of a business transaction may require each one of these independently of whether the other is required. If one is not required, it is actually not allowed. Therefore there is a finite set of combinations.

These could then be given pattern names.

Business modelers may find it convenient to develop and name business transaction design patterns to facilitate the development of their specifications (refer to UN/CEFACT-TMWG N90 for definitions). The following six property-value conventions for business transactions have proven useful in the application of the metamodel to existing business requirements.

Commercial Transaction

Request / Confirm

Query / Response

Request / Response

Notification

Information Distribution

3.2.3 Timeouts

Since all business transactions must have a distinct time boundary, there are time-out parameters associated with each of the response types. If the time-out occurs before the required response arrives, the transaction is null and void.

Here are the time-out parameters relative to the three response types:

	Response required
	Name of time out parameter
	Meaning of timeout

	Receipt acknowledgement
	timeToAcknowledgeReceipt
	The time a responding role has to acknowledge receipt of a business document.

	Acceptance Acknowledgement (Non-substantive)
	timeToAcknowledgeAcceptance
	The time a responding role has to non-substantively acknowledge business acceptance of a business document.

	Substantive acceptance
	TimeToPerform

	The time a responding role has to substantively acknowledge business acceptance of a business document.

A time-out parameter must be specified whenever a requesting partner expects one or more responses to a business document request. A requesting partner must not remain in an infinite wait state.
The time-out value for each of the time-out parameters is absolute i.e. not relative to each other. All timers start when the requesting business document is sent. The timer values must comply with the well-formedness rules in the previous section.

A responding partner simply terminates if a timeout is thrown. This prevents responding business transactions from hanging indefinitely.
When the time to perform an activity equals the time to acknowledge receipt or the time to acknowledge business acceptance then the highest priority time out exception must be used when the originator provides a reason for revoking their original business document offer. The time to perform exception is lower priority than both the time to acknowledge receipt and the time to acknowledge business acceptance.

3.2.4 ControlException

A ControlException signals an error condition in the management of a business transaction. This signal is asynchronously returned to the initiating service that originated the request. This exception must terminate the business transaction. These errors deal with the mechanisms of message exchange such as verification, validation, authentication and authorization and will occur up to message acceptance. Typically the rules and constraints applied to the message will have only dealt with structure, syntax and message element values.
3.2.5 Business Protocol Exceptions (a.k.a. ProcessException)
Under all normal circumstances the response message and/or the time-outs determine the success or failure of a business transaction. However the business processing of the transaction can go wrong at either the responding or the requesting role.
A ProcessException signals an error condition in a business activity. This signal is asynchronously returned to the initiating service that originated the request. This exception must terminate the business transaction. These errors deal with the mechanisms that process the business transaction and will occur after message verification and validation. Typically the rules and constraints applied to the message will deal the semantics of message elements and the validity of the request itself and the content is not valid with respect to a responding role’s business rules. This type of exception is usually generated after an AcceptanceAcknowledgement has been returned.
A business protocol exception terminates the business transaction. The following are business protocol exceptions.

· Negative acknowledgement of receipt. The structure/schema of a message is invalid.

· Negative acknowledgement of acceptance. The business rules are violated.

· Performance exceptions. The requested business action cannot be performed.

· Sequence exceptions. The order or type of a business document or business signal is incorrect.

· Syntax exceptions. There is invalid punctuation, vocabulary or grammar in the business document or business signal.

· Authorization exceptions. Roles are not authorized to participate in the business transaction.

· Business process control exceptions. Business documents are not signed for non-repudiation.

A responding role that throws a business protocol exception signals the exception back to the requesting role and then terminates the business transaction. A requesting role that throws a business protocol exception terminates the transaction and then sends a notification revoking the offending business document request. The requesting role cannot send a business signal to the responding role.

If any business exceptions (includes negative receipt and acceptance acknowledgements) are signaled then the business transaction must terminate.

3.2.6 Security Parameters

There are a number of parameters that specify the security characteristics of the business transaction. These fall in a number of categories:

· Document security,

· Message transfer security,

· Action security,

· Non-repudiation.

3.2.6.1 Document security:

Each business document being transported, even if many are collected in the same message, can be specified as:

isConfidential. The information entity is encrypted so that unauthorized parties cannot view the information.

isTamperProof. The information entity has an encrypted message digest that can be used to check if the message has been tampered with. This requires a digital signature (sender’s digital certificate and encrypted message digest) associated with the document entity.

isAuthenticated. There is a digital certificate associated with the document entity. This provides proof of the signer’s identity.

3.2.6.2 Message transfer security:

Each message can be specified to require secure transport. Right now we only have this at the transaction level, and only in one flavor.

isSecureTransportRequired

The recommendation is to keep it at the transaction level, but to specify it as IsConfidential, with a qualifying parameter that says persistence is required. Persistence NOT required means no-one can snoop the message on the wire. Persistence required means the message will not be readable by anyone until delivered into the application space. It would be up to implementers how to implement this.

Another recommendation would be that IsTamperProof be applied at message level as well

3.2.6.3 Action security

Each request or response may be sent by any number of people in the respective business partners companies. A request can be seen as ‘invoking’ the responding activity. The response can be seen as ‘invoking’ the requesting activity. The act of invoking may require the ‘invoker’ to be authorized.

IsAuthorizationRequired is specified on the requesting and responding activity accordingly.

It is unclear how this would be implemented by the two parties.

3.2.6.4 Non-Repudiation

Business transactions are legally binding. To help the parties have solid documentation to enforce that legal binding in court, non-repudiation may be required.

There are two flavors of non-repudiation.

One requires the two parties to save copies of the transacted documents, each on their own side, i.e. requestor saves his request, responder saves his response.
This is the isNonRepudiationRequired in the requesting or responding activity.

The other requires the responder to send a signed copy of the receipt, which the requestor then saves.

This is the isNonRepudiationOfReceiptRequired in the requesting business activity.

NonRepudiationOfReceipt is tied to the ReceiptAcknowledgement, in that it requires it to be signed. So one cannot have NonRepudiationOfReceipt without ReceiptAcknowledgement required, and the timeToAcknowledgeReceipt applies to both, i.e. if NonRepudiationOfReceipt and I don’t get a signed receipt within timeToAcknowledgeReceipt, the transaction is null and void.

3.2.7 Concurrency

There is one more parameter that governs the flow of transactions, but this one does not govern the internal flow of a transaction, rather it determines whether multiple instances of that transaction type can be ‘open’ at the same time as part of the same activity.

IsConcurrent at business transaction activity level.

3.2.8 Reliability

A parameter at the transaction level states whether reliable transport is required. This really means is guaranteed delivery required.

IsReliableTransportRequired in the business transaction

Recommendation: rename to isGuaranteedDeliveryRequired

3.2.9 Synchronous or Asynchronous

A business transaction may be implemented as either a synchronous or an asynchronous flow of control between the two activities. The specification of synchronous vs. asynchronous is part of the interaction pattern specification for a business transaction.

A partner role that initiates an asynchronous business transaction does not need to receive any business signals. A partner role that initiates a synchronous business transaction must be able to receive business signals and must block until the flow of control is returned. This should not preclude the initiation and execution of multiple concurrent business transactions, however.

3.3 Where the ebXML Specification Schema May Be Implemented

The ebXML Specification Schema should be used wherever software is being specified to perform a role in an ebXML binary collaboration. Specifically The ebXML Specification Schema is intended to provide the business process and document specification for the formation of a Trading Partner Collaboration Profile and Agreement.

4 Specification Element Overview

In the following we will review all the specification elements in the specification schema, grouped as follows:

· Business Collaborations

· Business Transactions

· Message Exchange

· Document model

· Choreography

4.1 Business Collaborations

4.1.1 MultiPartyCollaboration

A multiparty collaboration is a synthesis of binary collaborations. A multiparty collaboration consists of a number of business partners each playing one or more roles in binary collaborations with each other.

Tagged Values:

NONE
Associations:

partners
A multiparty collaboration has two or more BusinessPartners

Wellformedness Rules:

NONE

4.1.2 BusinessPartner

The business partners that participate in business collaborations are enumerated for each multiparty business collaboration. Partners provide the initiating and responding roles in the underlying binary collaborations.

Tagged Values:

name.
The name of the roles played by partner in the overall multiparty business collaboration, e.g. customer or supplier

Associations:

performers.
The authorizing roles performed by a partner in the binary business collaboration.

Wellformedness Rules:

A partner must not perform both roles in a business transaction activity.

4.1.3 Performs

Performs is an explicit modeling of the relationship between a BusinessPartner and the Roles it plays. This specifies the use of an authorizing role within a multiparty collaboration.

Tagged Values:

NONE
Associations:

performedBy
An instance of Performs is performed by only one BusinessPartner

role
Performs is the use of an AuthorizingRole within a multiparty collaboration

Wellformedness Rules:

NONE

4.1.4 AuthorizingRole

An authorizing role is the role that authorizes the requesting or responding activity, e.g. the buyer authorizes the request for purchase order, the seller authorizes the acceptance of purchase order.

Tagged Values:
name.
The name of the role within the business transaction

Associations:

performers
An AuthorizingRole may be used by one or more performers, i.e. business partners in a multiparty collaboration

requestors
An AuthorizingRole may authorize one or more requesting activities

responders
An AuthorizingRole may authorize one or more responding activities

from
An AuthorizingRole may be the initiator in a business activity

to
An AuthorizingRole may be the responder in a business activity

collaboration
An AuthorizingRole may be in only one BinaryCollaboration

Wellformedness Rules:

An AuthorizingRole may not be both the requestor and the responder in a business transaction

An AuthorizingRole may not be both the initiator and the responder in a binary business collaboration

4.1.5 BinaryCollaboration

A binary business collaboration choreographs one or more business transaction activities. A binary business collaboration is not a transaction and should be used in cases where transaction rollback is inappropriate. For example, a buying partner may request a purchase order creating from a selling partner. The selling partner may partially accept purchase order and thus complete the transaction but may only return shipping information on part of the order. The buying partner is sent any number of later notifications regarding the outstanding portions of the order until the order is completely reconciled.

Tagged Values:

timeToPerform.
The time allowed to complete the binary collaboration

Associations:

role
A binary collaboration consists of two roles

states
A binary collaboration consists of one or more states, some of which are ‘static’, and some of which are action states

usedBy
A binary collaboration may be used within another binary collaboration via a collaboration activity

Wellformedness Rules:

NONE

4.1.6 BusinessActivity

A business activity is an action state within a binary collaboration. It is the supertype for BusinessTransactionActivity and CollaborationActivity, specifying the activity of performing a transaction or another binary collaboration respectively.

Tagged Values:
name.
The name of the activity within the binary collaboration

Associations:

from
The initiating role

to
The responding role

Wellformedness Rules:

NONE

4.1.7 BusinessTransactionActivity

A business transaction activity is a business activity that executes a specified business transaction. The business transaction activity can be executed more than once if the isConcurrent property is true.

Tagged Values:

timeToPerform. Both partners agree to perform a business transaction activity within a specific duration. The originating partner must send a failure notification to a responding partner on timeout. A responding partner simple terminates its activity. The time to perform is the duration from the time a business transaction activity initiates the first business transaction until there is a transition back to the initiating business transaction activity. Both partners agree that the business signal document or business action document specified as the document to return within the time to perform is the “Acceptance Document” in an on-line offer/acceptance contract formation process.

isConcurrent.
If the business transaction activity is concurrent then more than one business transaction can be open at one time. If the business transaction activity is not concurrent then only one business transaction activity can be open at one time.

Associations:

uses.
The business transaction activity executes (uses) exactly one business transaction.

Wellformedness Rules:

NONE

4.1.8 CollaborationActivity

A collaboration activity is the activity of performing a binary collaboration within another binary collaboration.

Tagged Values:
NONE (other than inherited)
Associations:

uses.
A collaboration activity uses exactly one binary collaboration

Wellformedness Rules:

A binary collaboration may not re-use itself

4.2 Business Transactions

4.2.1 BusinessTransaction

A business transaction is a set of business information and business signal exchanges amongst two commercial partners that must occur in an agreed format, sequence and time period. If any of the agreements are violated then the transaction is terminated and all business information and business signal exchanges must be discarded. business transactions can be formal as in the formation of on-line offer/acceptance commercial contracts and informal an in the distribution of product announcements.

Tagged Values:

isSecureTransportRequired. Both partners must agree to exchange business information using a secure transport channel. The following security controls ensure that business document content is protected against unauthorized disclosure or modification and that business services are protected against unauthorized access. This is a point-to-point security requirement. Note that this requirement does not protect business information once it is off the network and inside an enterprise. The following are requirements for secure transport channels.

Authenticate sending role identity – Verify the identity of the sending role (employee or organization) that is initiating the role interaction (authenticate).

Authenticate receiving role identity – Verify the identity of the receiving role (employee or organization) that is receiving the role interaction.

Verify content integrity – Verify the integrity of the content exchanged during the role interaction i.e. check that the content has not been altered by a 3rd party.

Maintain content confidentiality – Confidentiality ensures that only the intended, receiving role can read the content of the role interaction

isReliableTransportRequired. Both partners must agree to use a transport that guarantees delivery

4.2.2 RequestingBusinessActivity

A requestingBusinessActivity is a business activity that is performed by a role requesting commerce from another business role.

IsAuthorizationRequired
 If a partner role needs authorization to request a business action or to respond to a business action then the sending partner role must sign the business document exchanged and the receiving partner role must validate this business control and approve the authorizer. A responding partner must signal an authorization exception if the sending partner role is not authorized to perform the business activity. A sending partner must send notification of failed authorization if a responding partner is not authorized to perform the responding business activity.

IsNonRepudiationRequired
If non-repudiation of origin and content is required then the business activity must store the business document in its original form for the duration mutually agreed to in a trading partner agreement. A responding partner must signal a business control exception if the sending partner role has not properly delivered their business document. A requesting partner must send notification of failed business control if a responding partner has not properly delivered their business document.

TimeToPerform
The time a responding role has to substantively acknowledge business acceptance of a business document.
TimeToAcknowledgeAcceptance
The time a responding role has to non-substantively acknowledge business acceptance of a business document.

TimeToAcknowledgeReceipt
The time a responding role has to acknowledge receipt of a business document.
isNonRepudiationOfReceiptRequired.

Both partners agree to mutually verify receipt of a requesting business document and that the receipt must be non-reputable. A receiving partner must send notification of failed business control (possibly revoking a contractual offer) if a responding partner has not properly delivered their business document.

Non-repudiation of receipt provides the following audit controls.
Verify responding role identity (authenticate) – Verify the identity of the responding role (individual or organization) that received the requesting business document.
Verify content integrity – Verify the integrity of the original content of the business document request.

Associations:

transaction
A requesting activity is performed in exactly one business transaction

requesters
A requesting activity can be performed by one or more responding roles

envelope
A requesting activity sends exactly one document envelope

Wellformedness Rules:

NONE

4.2.3 RespondingBusinessActivity

A respondingBusinessActivity is a business activity that is performed by a role responding to another business role’s request for commerce.

Tagged Values:

isIntelligibleCheckRequired. Both partners agree that a responding partner role must check that a requesting document is not garbled (unreadable, unintelligible) before verification of properly receipt is returned to the requesting partner.

Associations:

transaction
A responding activity is performed in exactly one business transaction

responders
A responding activity can be performed by one or more responding roles

envelope
A responding activity sends at most one document envelope

Wellformedness Rules:

NONE

4.3 Message Exchange

4.3.1 DocumentEnvelope

A document envelope is what conveys business information between the two roles in a business transaction. One document envelope conveys the request from the requesting role to the responding role, and another document envelope conveys the response (if any) from the responding role back to the requesting role.

Tagged Values:
NONE
Associations:

requesting
A DocumentEnvelope is sent by at most one requesting activity

responding
A DocumentEnvelope is sent by at most one responding activity

potentialContent
A DocumentEnvelope contains only one Document Set.

Wellformedness Rules:

A DocumentEnvelope cannot be sent by both a requesting and a responding activity

4.3.2 DocumentSet
A DocumentSet is the collection of business documents that are contained in a DocumentEnvelope.

A documentSet has at least one, but may have multiple documents. The documents may be of different types, for instance the DocumentSet could contain a document, a picture, and a soundclip. Each document is identified by a name and a type.

Tagged Values:
NONE
Associations:

envelope
A DocumentSet is conveyed by one or more DocumentEnvelopes.

content
A DocumentSet contains (uses) one or more documents represented by Content instances

Wellformedness Rules:

NONE

.

4.3.3 Content

A Content is an entry in a DocumentSet. It identifies the use of a document within the set.

Tagged Values:
NONE
Associations:

owner
A Content is in exactly one DocumentSet

type
A Content identifies exactly one BusinessDocument

Wellformedness Rules:

NONE

4.4 Document Model

4.4.1 BusinessDocument

A BusinessDocument is an InformationEntity of type ebxmlDocumentType.

ebxmlDocumentType is an enumerated list of types that can be unambiguously mapped to MIME types.

The list includes "TaggedText", "Picture", "SoundClip", "Movie"

ebxmlDocumentType is a technology independent classification of the kinds of documents that can be included in a DocumentSet. Some of these, like "TaggedText" are structured, i.e. can be broken down into smaller grained entities, still known to ebXML. Others, like "Picture", "SoundClip", "Movie" are unstructured, which means ebXML does not know about their subdivisions, if any. StructuredDocuments must be of a structured type. UnstructuredDocuments must be of an Unstructured type.

Tagged Values:
documentType a value from the enumerated list of ebxmlDocumentTypes

Associations:

content
A BusinessDocument may be a Content in one or more DocumentSets

Wellformedness Rules:

NONE

4.4.2 StructuredDocument

StructuredDocument is a subtype of BusinessDocument. Its ebxmlDocumentType is always a structured type. It is also a subtype AggregateInformationEntity, so it may have attributes.

Tagged Values:
NONE (other than inherited)
Associations:

NONE (other than inherited)
Wellformedness Rules:

NONE

4.4.3 UnstructuredDocument

UnStructuredDocument is a subtype of BusinessDocument. Its ebxmlDocumentType is always a unstructured type. It is NOT a subtype AggregateInformationEntity, so it may have attributes.

Tagged Values:
NONE (other than inherited)
Associations:

NONE (other than inherited)
Wellformedness Rules:

NONE

4.4.4 InformationEntity

An InformationEntity is the building block from which complex information 'bundles' can be composed. An informationEntity has one and only one type.

InformationEntity is the supertype for BasicInformationEntity and AggregateInformationEntity and BusinessDocument. Depending on the subtype the InformationEntity’s type may be a primitive type (like string, integer, float, date), or it may be an ebxmlDocumentType (like "Movie", "EDI message", "Picture").

An information entity realizes structured business information that is exchanged by partner roles performing activities in a business transaction. Information entities include or reference other information entities through associations.

A secure information entity is an information entity with security controls. Security controls must be specified when information must be secured within an enterprise until it is accessed by an authorized partner role.

These parameters on this model element must be specified in a manner that ensures document integrity by maintaining a “chain-of-custody” from the sender to the intended recipient of the business information.

Tagged Values:

isConfidential. The information entity is encrypted so that unauthorized parties cannot view the information.

isTamperProof. The information entity has an encrypted message digest that can be used to check if the message has been tampered with. This requires a digital signature (sender’s digital certificate and encrypted message digest) associated with the document entity.

isAuthenticated. There is a digital certificate associated with the document entity. This provides proof of the signer’s identity.

Associations:

Attribute:
An InformationEntity provides the definition (and type) for one or more attributes in one or more AggregateInformationEntities.

Wellformedness rules:

NONE

4.4.5 AggregateInformationEntity:

AggregateInformationEntity is a collection of attributes, each representing an information entity.

Tagged Values:
NONE
Associations:

Attribute:
An AggregateInformationEntity contains one or more attributes.

Wellformedness Rules:

NONE

4.4.6 BasicInformationEntity:

BasicInformationEntity is a subtype of InformationEntity. It represents an information entity of a primitive type like string, integer, float, date.

Tagged Values:
type
(enumerated: string, integer, date)

Associations:

NONE (except as inherited from InformationEntity.)

Wellformedness Rules:

NONE

4.4.7 Attribute:

An attribute is the use of an InformationEntity within a CompositeEntity. The attribute has a name within the composite entity, and may be flagged as required and/or repeating (using the multiple flag). The type of the attribute is the type of the InformationEntity it uses.

Tagged Values:
name
 the name of the attribute within this AggregateInformationEntity

required
boolean, if YES the attribute is required, else it is optional

multiple
boolean, if YES then more than one value of the attribute may supplied within one instance of the attribute. If not YES then only one value may be supplied.

isLink
boolean, if YES then the value of this attribute is a link to a place where the true value can be found.

Associations:

owner
An attribute belongs to only one AggregateInformationEntity.

Type
An attribute is of exactly one InformationEntity type. If that InformationEntity happens to be an AggregateInformationEntity then you in essence have nested attributes.

Wellformedness Rules:

NONE

4.5 Choreography within Collaborations.

4.5.1 BusinessState

A business state is any state that a binary collaboration can be in. Some business states are a snapshot right after or right before an activity, others are action states that denote the state of being in an activity.

Tagged Values:
none
Associations:

collaboration
A business state belongs to only one binary collaboration

entering
A transition that reflects entry into this state

exiting
A transition that reflects exiting from this state

Wellformedness Rules:

NONE

4.5.2 Transition

Choreography is expressed as transitions between business states

Tagged Values:

None
Associations:

in.
The business state this transition is entering

out.
The business state this transition is exiting

guard
A transition may be governed by one or more guards

Wellformedness Rules:

A transition cannot enter and exit the same state

4.5.3 Start

The starting state for an activity

Tagged Values:
NONE
Associations:

NONE
Wellformedness Rules:

NONE

4.5.4 TerminalState

The ending state of an activity, subclassed by success and failure

Tagged Values:
None
Associations:

None
Wellformedness Rules:

None

4.5.5 Success

A subtype of TerminalState which signifies the successful completion of an activity

Tagged Values:
None.

Associations:

None
Wellformedness Rules:

Every activity must have at least one success

4.5.6 Failure

A subtype of TerminalState which signifies the failed completion of an activity

Tagged Values:
None.

Associations:

None
Wellformedness Rules:

Every activity must have at least one failure

4.5.7 SynchronizationState

A business state where an activity is waiting for the completion of one or more other activities.

Tagged Values:
None
Associations:

None
Wellformedness Rules:

None

4.5.8 Guard

The condition under which a transition may happen.

Tagged Values:
exclude.

Precondition

Associations:

Transition
The transition(s) that this guard governs
Wellformedness Rules:

Guards must refer only to the names and contents of document sets.

4.6 Definition and Scope

The ebXML Specification Schema should be used wherever software is being specified to perform a role in an ebXML binary collaboration. Specifically The ebXML Specification Schema is intended to provide the business process and document specification for the formation of a Trading Partner Collaboration Profile and Agreement. A set of specification rules have been established to properly constrain the the expression of a business process and information model in a way that can be directly incorporated into a Trading Partner Collaboration Profile and Agreement.

4.7 Collaboration Specification Rules

The following rules are used to constrain the values of the parameters of the elements used to define a Commercial Collaboration.

4.7.1 Well-formedness Rules

The following well-formedness rules apply to the definition of a Collaboration Specification.

General
[0] If non-repudiation is required then the input or returned business document must be a tamper-proofed entity.

[1] If authorization is required then the input business document and business signal must be an authenticated or a tamper proofed secure entity.

[2] The time to acknowledge receipt must be less than the time to acknowledge acceptance if both properties have values.

 timeToAcknowledgeReceipt < timeToAcknowledgeAcceptance

[3] If the time to acknowledge acceptance is null then the time to perform an activity must either be equal to or greater than the time to acknowledge receipt.

[4] The time to perform a transaction cannot be null if either the time to acknowledge receipt or the time to acknowledge acceptance is not null.

[5] If non-repudiation of receipt is required then the time to acknowledge receipt cannot be null.

[6] The time to acknowledge receipt, time to acknowledge acceptance and time to perform cannot all be zero.

[7] If non-repudiation is required at the requesting business activity, then there must be a responding business document.

[8] The time to acknowledge receipt, time to acknowledge acceptance and time to perform properties must be specified for both the requesting and responding business activities and they must be equal.

RequestingBusinessActivity
[9] There must be one input transition whose source state vertex is an initial pseudo state.

[10] There must be one output transition whose target state vertex is a final state specifying the state of the machine when the activity is successfully performed.

[11] There must be one output transition whose target state vertex is a final state specifying the state of the machine when the activity is NOT successfully performed due to a process control exception.

[12] There must be one output transition whose target state vertex is a final state specifying the state of the machine when the activity is NOT successfully performed due to a business process exception.

[13] There must be one output DocumentEnvelope that in turn is the input to a responding business activity.

[14] There must be zero or one output DocumentEnvelope from a requesting that in turn is the input to the requesting business activity.

RespondingBusinessActivity
[15] There must be one input transition from a DocumentEnvelope that in turn has one input transition from a requesting business activity.

[16] There must be zero or one output transition to an DocumentEnvelope that in turn has an output transition to a requesting business activity.

Information Entity

[17] The associations on an information entity must be aggregation relationships with other information entities to form a partonomy, a hierarchical decomposable arrangement of business document parts.

[18] The information entity associations only must be navigable from a containing entity to an element entity (has-part relationship).

[19] Constraints on an information entity association must be specified on the role of the part (supplier) with respect to the whole (client).

[20] The client and supplier of an entity association must not be the same entity.

Business Collaboration

[21] A business partner cannot provide both the initiating and responding roles of the same business transaction activity.

5 Specification Schema – (DTD)

In this section we describe the DTD version of the Specification Schema. This discussion includes

· A listing of the DTD itself

· A table listing all the elements found in the DTD with definitions and parent/child relationships

· A table listing all the attributes found in the DTD with definitions and parent element relationships

· A table listing all the elements found in the DTD, each with a cross reference to the corresponding class in the UML version of the specification schema

· An example using the DTD

· Rules about namespaces

Additionally, following this section, a section will describe common modeling elements, including datatypes, and DTDs for common signals. And a section after that describes the production rules we intend to follow for creating XML documents from a model instance against the UML specification schema.

5.1 Documentation for the DTD

This section will document the DTD. The DTD has been derived from the UML model. The correlation between the UML entity and DTD element will be shown for each entity/element.

a. Attribute

XML Element Name: attribute

DTD Declaration:

<!ELEMENT attribute (documentation?)>

<!ATTLIST attribute

name CDATA #REQUIRED

type CDATA #REQUIRED

required (true | false) "false"

multiple (true | false) "false"

isLink (true | false) "false">

Definition:

Defines one element of a document.

Parent Elements:

· Document

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	 Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	type
	The type of one element as defined by another, referenced element. If type is not supplied it shall be the same as name.
	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	required
	Defines that the attribute or content must be part of an instance of the aggregate.
	false
Valid values {true, false}

	multiple
	Defines that the attribute may be repeated multiple times within the aggregate.
	false
Valid values {true, false}

	isLink
	Defines that the attribute references an external document (document not passed in the same document set) of the given data type.
	false
Valid values {true, false}

b. Binary Collaboration

XML Element Name: binary-collaboration

DTD Declaration:
<!ELEMENT binary-collaboration ((documentation |

 business-transaction-activity |

 collaboration-activity |

 sync-state | start | transition |

 success | failure)*)>

<!ATTLIST binary-collaboration

name CDATA #REQUIRED

initiator CDATA #REQUIRED

responder CDATA #REQUIRED

 timeToPerform CDATA #IMPLIED

timeUnit (milliseconds | seconds |

 minutes | hours | days |

 weeks | months | years) "minutes">

Definition:

Defines a contract of interaction between two business roles.

Parents:

· Package
Attributes:

	Attribute Name
	Definition
	Default Value

	name
	 Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	initiator
	Name of the initiating role in a binary-collaboration.
	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	responder
	Name of the responding role in a binary-collaboration
	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	timeToPerform
	 Time allowed for execution of the collaboration
	zero
Valid values {true, false}

	timeUnit
	For each timing parameter set defined the time unit may also be set.
	minutes
Valid values {milliseconds, seconds, minutes, hours, days, weeks, months, years}

Hierarchical Model:

[image: image32.png]documentation

business-transaction-activity ~

collaboration-activity ~

sync-state ~

binary-collaboration ~ fj*

start ~
transition ~
success ~
failure ~

c: Business Partner

Element Name: business-partner

DTD Declaration:

<!ELEMENT business-partner (documentation?, performs+)>

<!ATTLIST business-partner

name CDATA #REQUIRED>

Parents:

· multi-party-collaboration

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	 Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

d: Business Transaction Activity

Element Name: business-transaction-activity
Content Model:

<!ELEMENT business-transaction-activity (documentation?)>

<!ATTLIST business-transaction-activity

name CDATA #REQUIRED

type CDATA #IMPLIED

from CDATA #REQUIRED

to CDATA #REQUIRED

 timeToPerform CDATA #IMPLIED

timeUnit (milliseconds | seconds | minutes |

 hours | days | weeks | months | years)

 "minutes"

 isConcurrent (true | false) "false">

Definition:
Defines the use of a business transaction within a binary collaboration. The first activity must have the "from" attribute match the "initiator" in the binary-collaboration. After the first activity "from" and "to" must match either the "initiator" or "responder" in the binary collaboration.

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	 Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	type
	The type of one element as defined by another, referenced element. If type is not supplied it shall be the same as name.
	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	from
	The name of the role initiating the activity.

	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	to
	Name of the role responding to the activity. The activity must be the same collaboration.
	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	timeToPerform
	 Time to execute this transaction within this collaboration
	zero
Valid values {true, false}

	timeUnit
	For each timing parameter set defined the time unit may also be set.
	minutes
Valid values {milliseconds, seconds, minutes, hours, days, weeks, months, years}

	isConcurrent
	Multiple instances of this transaction activity can run concurrently
	false

e. Business Transaction/Requesting Business Activity/Responding Business Activity

Element Name: business-transaction

DTD Declaration:

<!ELEMENT business-transaction (documentation?, request,

 response*)>

<!ATTLIST business-transaction

name CDATA #REQUIRED

 isNonReputiationReceiptRequired (true | false)

 #IMPLIED

isIntelligibleCheckRequired (true | false) #IMPLIED

isAuthorizationRequired (true | false) #IMPLIED

 isSecureTransportRequired (true | false) #IMPLIED

 isReliableTransportRequired (true | false) #IMPLIED

 isNonRepudiationRequired (true | false) #IMPLIED

 isNonRepudiationReceiptRequired (true | false)

 #IMPLIED

 timeToAcknowledge CDATA #IMPLIED

timeToAcknowledgeReceipt CDATA #IMPLIED

timeToPerform CDATA #IMPLIED

timeUnit (milliseconds | seconds | minutes |

 hours | days | weeks | months | years)

 "minutes">

Definition:

Defines the most atomic unit of interchange between business partners consisting of a request and, potentially, a reply with intermediate handshake signals as defined by business patterns.

Parents:

· Package
Attributes:

	Attribute Name
	Definition
	Default Value

	name
	 Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	isIntelligibleCheckRequired
	Must validate readability
	No Default
Valid values {true, false}

	isAuthorizationRequired
	sending partner role must sign the business document exchanged and the receiving partner role must validate
	No Default
Valid values {true, false}

	isSecureTransportRequired
	Requires secure transport of message
	No Default
Valid values {true, false}

	isReliableTransportRequired
	Requires guaranteed delivery of message
	No Default
Valid values {true, false}

	isNonRepudiationRequired
	must store the business document in its original form
	No Default
Valid values {true, false}

	isNonRepudiationReceiptRequired
	Must mutually verify receipt of a requesting business document and that the receipt must be non-reputable
	No Default
Valid values {true, false}

	timeToAcknowledge
	Time from initial request to acceptanceAcknowledgement
	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	timeToAcknowledgeReceipt
	Time from initial request to receiptAcknowledgement
	No default value. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

	timeToPerform
	 Time to perform this business transaction or activity
	zero
Valid values {true, false}

	timeUnit
	For each timing parameter set defined the time unit may also be set.
	minutes
Valid values {milliseconds, seconds, minutes, hours, days, weeks, months, years}

f. Collaboration Activity

Element Name: collaboration-activity

DTD Declaration:

<!ELEMENT collaboration-activity (documentation?)>

<!ATTLIST collaboration-activity

name CDATA #REQUIRED

type CDATA #IMPLIED

from CDATA #REQUIRED

to CDATA #REQUIRED

Definition:

Defines the use of one binary collaboration within another. The first activity must have the "from" attribute match the "initiator" in the binary-collaboration. After the first activity "from" and "to" must match either the "initiator" or "responder" in the binary-collaboration.

Parents:

· Binary collaboration

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	 Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input.

	type
	The type of one element as defined by another, referenced element. If type is not supplied it shall be the same as name.
	No default value.

	from
	The name of the role initiating the activity.

	Required Input

	to
	Name of the role responding to the activity. The activity must be the same collaboration.
	Required Input.

g. Content

Element Name: content

DTD Declaration:

<!ELEMENT content (documentation?)>

<!ATTLIST content

name CDATA #REQUIRED

type CDATA #REQUIRED

required (true | false) "false"

isLink (true | false) "false"

isConfidential (true | false) "false"

isTamperProof (true | false) "false"

isAuthenticated (true | false) "false"

>

Definition:

Defines one element of an aggregate document set

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input.

	required
	Defines that the attribute or content must be part of an instance of the aggregate.
	false
Valid values {true, false}

	isLink

	 Defines that the attribute references an external document (document not passed in the same document set) of the given data type.
	false
Valid values {true, false}

	isConfidential
	The information entity is encrypted so that unauthorized parties cannot view the information

	false
Valid values {true, false}

	isTamperProof
	The information entity has an encrypted message digest that can be used to check if the message has been tampered with
	false
Valid values {true, false}

	isAuthenticated
	There is a digital certificate associated with the document entity
	false
Valid values {true, false}

h. Basic Information Entity

Element Name: data-type

DTD Declaration:
<!ELEMENT data-type (documentation?)>

<!ATTLIST data-type

 name CDATA #REQUIRED>

Definition:

Defines a new, primitive data type in a package in addition to the built-in primitive types. There must be prior agreement as to the structure of the data type.

Parents:

· Package
Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input. A value must be present. Names may only contain the characters a-z, A-Z, 0-9, _

i. Structured Document

Element Name: document

DTD Declaration:

<!ELEMENT document (documentation?, attribute*)>

<!ATTLIST document

name CDATA #REQUIRED

supertype CDATA #IMPLIED

 isConfidential (true | false) "false"

isTamperProof (true | false) "false"

isAuthenticated (true | false) "false">

Definition:

Defines data types in a package composed of other data types (using attributes) that can be used in document sets.

Parents:

· Package

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input

	supertype
	The name of an aggregate which forms the base of another aggregate. All attributes of the referenced supertype shall become attributes of the aggregate being defined.
	No default value

	isConfidential
	The information entity is encrypted so that unauthorized parties cannot view the information
	false
Valid values {true, false}

	isTamperProof
	The information entity has an encrypted message digest that can be used to check if the message has been tampered with
	false
Valid values {true, false}

	isAuthenticated
	There is a digital certificate associated with the document entity
	false
Valid values {true, false}

j. Documentation (NOTE: No UML Entity)

Element Name: documentation

DTD Declaration:

<!ELEMENT documentation ANY>

Definition:

Defines user documentation for any element which must be the first element of it's container. The documentation must be in the form of XHTML.

Parents:

· attribute

· binary-collaboration

· business-partner

· business-transaction

· business-transaction-activity

· collaboration-activity

· content

· data-type

· document

· document-set

· ebxmlprocessspecification

· failure

· include

· multi-party-collaboration

· package

· performs

· request

· response

· start

· success

· sync-state

· transition

· unstructured
k. DocumentSet

Element Name: document-set

DTD Declaration:

<!ELEMENT document-set (documentation?, content*)>

<!ATTLIST document-set

name CDATA #REQUIRED

 isConfidential (true | false) "false"

isTamperProof (true | false) "false"

 isAuthenticated (true | false) "false">

Definition:

Defines a set of structured or unstructured documents which may be used in a business transaction.

Parents:

· package

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input

	IsConfidential
	The information entity is encrypted so that unauthorized parties cannot view the information
	false
Valid values {true, false}

	isTamperProof
	The information entity has an encrypted message digest that can be used to check if the message has been tampered with
	false
Valid values {true, false}

	isAuthenticated
	There is a digital certificate associated with the document entity
	false
Valid values {true, false}

l. ebXML Specification

Element Name: ebXmlProcessSpecification

DTD Declaration:

<!ELEMENT EbXmlProcessSpecification ((package | include | documentation)*)>

<!ATTLIST EbXmlProcessSpecification

name CDATA #REQUIRED

 uuid CDATA #IMPLIED

 version CDATA #IMPLIED>

Definition:

Root element of a process specification document which has a globally unique identity.

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input

	uuid
	Unique Identifier
	No Default Value

	version
	Version of the specification
	No Default Value

[image: image33.png]documentation
package ~ Il
business-transaction ~
binary-collaboration ~

package ~ (| |data-type ~

document ~
document-set ~
unstructured ~

multi-party-collaboration ~

Hierarchical Model:

m. Transition/Failure

Element Name: failure

DTD Declaration:
<!ELEMENT failure (documentation?)>

<!ATTLIST failure

from CDATA #REQUIRED

guard CDATA #IMPLIED

 condition (success | failure | technical-failure

 | business-failure | any) "any">

Definition:

Defines the unsuccessful conclusion of a binary collaboration as a transition from an activity.

Parents:

· binary-collaboration
Attributes:

	Attribute Name
	Definition
	Default Value

	from
	The name of the role initiating the activity.

	Required Input.

	guard
	Name of the document set which must have been the last set sent or returned from the originating activity for the transition to transfer control.
	No default value.

	condition
	The status of the orginating activity which must be met for the transition to transfer control. If both the condition and guard are set, both must be true.
	Any
Allowed Values: {success, failure, technica-failure, business-failure, any}

n. Include

Element Name: include

DTD Declaration:

<!ELEMENT include (documentation?)>

<!ATTLIST include

 name CDATA #REQUIRED

 uri CDATA #REQUIRED

 uuid CDATA #IMPLIED

 version CDATA #IMPLIED>

Definition:

Includes another process specification document and merges that specification with the current specification. Any elements of the same name and in the same name scope must have exactly the same specification except that packages may have additional content.

Documents are merged based on name scope. A name in an included package will be indistinguishable from a name in the base document.

Parents:

· EbXmlProcessSpecification
Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input

	uri
	Uniform Resource Indicator.
	No Default Value

	uuid
	Unique Identifier
	No Default Value

	version
	Version of the specification
	No Default Value

o. MultiParty Collaboration

Element Name: multi-party-collaboration

DTD Declaration:

<!ELEMENT multi-party-collaboration (documentation?,

 business-partner+)>

<!ATTLIST multi-party-collaboration

name CDATA #REQUIRED>

Definition:

Defines the business partner roles and the binary collaborations they perform as part of an ebXML business process.

Parents:

· Package

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input

p. Package

Element Name: package

DTD Declaration:

<!ELEMENT package ((documentation | package |

 business-transaction |

 binary-collaboration | data-type |

 document | document-set | unstructured

 | multi-party-collaboration)*)>

<!ATTLIST package

name CDATA #REQUIRED>

Definition:

Defines a hierarchical name scope containing reusable elements.

Parents:

· ebXmlProcessSpecification

· package

Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input

Hierarchical Model:

[image: image34.png]package ~

EbXmlProcessSpecification ~ [1* K |include ~

documentation

q. Performs

Element Name: performs

DTD Declaration:
<!ELEMENT performs (documentation?)>

<!ATTLIST performs

service CDATA #REQUIRED

role CDATA #REQUIRED>

Definition:

Defines which roles in a binary collaboration a business partner role will implement.

Parents:

· business-partner
Attributes:

	Attribute Name
	Definition
	Default Value

	service
	Name of the binary collaboration which will be performed by the business partner role.
	Required Input

	role
	Name of the role in the binary collaboration which will be performed by the business partner role.
	Required Input

r. Document Envelope - Request/Result

Element Name: request

DTD Declaration:
<!ELEMENT request (documentation?)>

<!ATTLIST request

type CDATA #REQUIRED>

Definition:

Defines the request part of a busines-transaction which references the document-set which will be part of that request.

If the type of the request is a document, a document set which contains that document will be implicitly created.

Parents:

· business-transaction

Attributes:

	Attribute Name
	Definition
	Default Value

	type
	The type of one element as defined by another referenced element. If type is not supplied it shall be the same as name.Either the last sentence should be deleted or the default value should be #IMPLIED.
	Required Input

s. Document Envelope - Response/Result

Element Name: response

DTD Declaration:
<!ELEMENT response (documentation?)>

<!ATTLIST response

type CDATA #REQUIRED

status (success | failure) "success">

Definition:

Defines the eresponse part of a business-transaction which references the document-set which will be part of that request. There may be multiple response elements indicating potential return scenarios.

If the type of request is a document, a document set which contains that document will be implicitly created.

Parents:

· business-transaction
Attributes:

	Attribute Name
	Definition
	Default Value

	type
	The type of one element as defined by another referenced element. If type is not supplied it shall be the same as name.
	Required Input

	status
	Defines the termination status of the business-transaction for the given document set type.
	success

Allowed Values:

{success, failure}

t. Start

Element Name: start

DTD Declaration:
<!ELEMENT start (documentation?)>

<!ATTLIST start

to CDATA #REQUIRED>

Definition:

Defines a start activity. A binary collaboration must have at least one start activity and that activity must be “to” the “initiator”.

Parents:

· binary-collaboration
Attributes:

	Attribute Name
	Definition
	Default Value

	to
	Name of the role responding to the activity. The activity must be the same collaboration.
	Required Input

u. Transition/Success

Element Name: success

DTD Declaration:
<!ELEMENT success (documentation?)>

<!ATTLIST success

from CDATA #REQUIRED

guard CDATA #IMPLIED

 condition (success | failure | technical-failure

 | business-failure | any) "any">

Definition:

Defines the successful conclusion of a binary collaboration as a transition from an activity.

Parents:

· binary-collaboration
Attributes:

	Attribute Name
	Definition
	Default Value

	from
	The name of the role initiating the activity.
	Required Input.

	guard
	Name of the document set which must have been the last set sent or returned from the originating activity for the transition to transfer control.
	No default value.

	condition
	The status of the orginating activity which must be met for the transition to transfer control. If both the condition and guard are set, both must be true.
	Any
Allowed Values: {success, failure, technica-failure, business-failure, any}

v. SyncState

Element Name: sync-state

DTD Declaration:
<!ELEMENT sync-state (documentation?)>

<!ATTLIST sync-state

name CDATA #REQUIRED

 any (true | false) "false">

Definition:

Defines the point of intersection between concurrent activities.

Parents:

· binary-collaboration
Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input

	any
	
	false

Allowed Values:

{true, false}

w. Transition

ELEMENT Name: transition

DTD Declaration:
<!ELEMENT transition (documentation?)>

<!ATTLIST transition

to CDATA #REQUIRED

guard CDATA #IMPLIED

condition (success | failure | technical-failure

 | business-failure | any) "any"

from CDATA #REQUIRED>

Definition:

Defines the capability for a collaboration to transition from one state to another provided the guard and condition has been met.

Parents:

· binary-collaboration
Attributes:

	Attribute Name
	Definition
	Default Value

	to
	Name of the role responding to the activity. The activity must be the same collaboration.
	Required Input.

	guard
	Name of the document set which must have been the last set sent or returned from the originating activity for the transition to transfer control.
	No default value.

	condition
	The status of the orginating activity which must be met for the transition to transfer control. If both the condition and guard are set, both must be true.
	Any
Allowed Values: {success, failure, technica-failure, business-failure, any}

	from
	The name of the role initiating the activity.

	Required Input.

x. Unstructured

Element Name: unstructured

DTD Declaration:
<!ELEMENT unstructured (documentation?)>

<!ATTLIST unstructured

name CDATA #REQUIRED

mimeType CDATA #IMPLIED

 isConfidential (true | false) "false"

isTamperProof (true | false) "false"

 isAuthenticated (true | false) "false">

If this will point to an external object, i.e., movies, then the name attribute should be type ENTITY and not CDATA.
Definition:

Defines a document type in a package where the structure of that document is determined external to the ebXML specification. Used for movies, picutres, EDI documents, etc. May also be used for XML documents that fall outside the ebXml document model.

Parents:

· Package
Attributes:

	Attribute Name
	Definition
	Default Value

	name
	Defines the name of a model element. This name must be unique within the context of the model element and will be used to reference the element from other points in the model.
	Required Input.

	mimetype
	Specified the MIME type that will implement an unstructured document. The string must conform to the MIME type name.
	No Default Value.

	
	
	

	isConfidential
	The information entity is encrypted so that unauthorized parties cannot view the information
	false
Valid values {true, false}

	isTamperProof
	The information entity has an encrypted message digest that can be used to check if the message has been tampered with
	false
Valid values {true, false}

	isAuthenticated
	There is a digital certificate associated with the document entity
	false
Valid values {true, false}

Additionally, following this section, a section will describe common modeling elements, including datatypes, and DTDs for common signals. And a section after that describes the production rules we intend to follow for creating XML documents from a model instance against the UML specification schema.

5.2 DTD

This is the Specification Schema DTD:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT EbXmlProcessSpecification ((package | include | documentation)*)>

<!ATTLIST EbXmlProcessSpecification

name CDATA #REQUIRED

 uuid CDATA #IMPLIED

 version CDATA #IMPLIED

>

<!ELEMENT include (documentation?)>

<!ATTLIST include

 name CDATA #REQUIRED

 uri CDATA #REQUIRED

 uuid CDATA #IMPLIED

 version CDATA #IMPLIED

>

<!ELEMENT package ((documentation | package | business-transaction | binary-collaboration | data-type |

 document | document-set | unstructured | multi-party-collaboration)*)>

<!ATTLIST package

name CDATA #REQUIRED

>

<!ELEMENT data-type (documentation?)>

<!ATTLIST data-type

 name CDATA #REQUIRED

>

<!ELEMENT document (documentation?, attribute*)>

<!ATTLIST document

name CDATA #REQUIRED

supertype CDATA #IMPLIED

 isConfidential (true | false) "false"

isTamperProof (true | false) "false"

isAuthenticated (true | false) "false"

>

<!ELEMENT attribute (documentation?)>

<!ATTLIST attribute

name CDATA #REQUIRED

type CDATA #REQUIRED

required (true | false) "false"

multiple (true | false) "false"

isLink (true | false) "false"

>

<!ELEMENT unstructured (documentation?)>

<!ATTLIST unstructured

name CDATA #REQUIRED

mimeType CDATA #IMPLIED

 isConfidential (true | false) "false"

isTamperProof (true | false) "false"

 isAuthenticated (true | false) "false"

>

<!ELEMENT documentation ANY>

<!ELEMENT document-set (documentation?, content*)>

<!ATTLIST document-set

name CDATA #REQUIRED

 isConfidential (true | false) "false"

isTamperProof (true | false) "false"

 isAuthenticated (true | false) "false"

>

<!ELEMENT content (documentation?)>

<!ATTLIST content

name CDATA #REQUIRED

type CDATA #REQUIRED

required (true | false) "false"

isLink (true | false) "false"

isConfidential (true | false) "false"

isTamperProof (true | false) "false"

isAuthenticated (true | false) "false"

>

<!ELEMENT business-transaction (documentation?, request, response*)>

<!ATTLIST business-transaction

name CDATA #REQUIRED

 isNonReputiationReceiptRequired (true | false) #IMPLIED

isIntelligibleCheckRequired (true | false) #IMPLIED

isAuthorizationRequired (true | false) #IMPLIED

 isSecureTransportRequired (true | false) #IMPLIED

 isReliableTransportRequired (true | false) #IMPLIED

 isNonRepudiationRequired (true | false) #IMPLIED

 isNonRepudiationReceiptRequired (true | false) #IMPLIED

 timeToAcknowledge CDATA #IMPLIED

timeToAcknowledgeReceipt CDATA #IMPLIED

timeToPerform CDATA #IMPLIED

timeUnit (milliseconds | seconds | minutes | hours | days | weeks | months | years) "minutes"

>

<!ELEMENT request (documentation?)>

<!ATTLIST request

type CDATA #REQUIRED

>

<!ELEMENT response (documentation?)>

<!ATTLIST response

type CDATA #REQUIRED

status (success | failure) "success"

>

<!ELEMENT binary-collaboration ((documentation | business-transaction-activity | collaboration-activity | sync-state | start | transition | success | failure)*)>

<!ATTLIST binary-collaboration

name CDATA #REQUIRED

initiator CDATA #REQUIRED

responder CDATA #REQUIRED

 timeToPerform CDATA #IMPLIED

timeUnit (milliseconds | seconds | minutes | hours | days | weeks | months | years) "minutes"

>

<!ELEMENT collaboration-activity (documentation?)>

<!ATTLIST collaboration-activity

name CDATA #REQUIRED

type CDATA #IMPLIED

from CDATA #REQUIRED

to CDATA #REQUIRED

>

<!ELEMENT sync-state (documentation?)>

<!ATTLIST sync-state

name CDATA #REQUIRED

 any (true | false) "false"

>

<!ELEMENT business-transaction-activity (documentation?)>

<!ATTLIST business-transaction-activity

name CDATA #REQUIRED

type CDATA #IMPLIED

from CDATA #REQUIRED

to CDATA #REQUIRED

 timeToPerform CDATA #IMPLIED

timeUnit (milliseconds | seconds | minutes | hours | days | weeks | months | years) "minutes"

 isConcurrent (true | false) "false"

>

<!ELEMENT transition (documentation?)>

<!ATTLIST transition

to CDATA #REQUIRED

guard CDATA #IMPLIED

condition (success | failure | technical-failure | business-failure | any) "any"

from CDATA #REQUIRED

>

<!ELEMENT success (documentation?)>

<!ATTLIST success

from CDATA #REQUIRED

guard CDATA #IMPLIED

 condition (success | failure | technical-failure | business-failure | any) "any"

>

<!ELEMENT failure (documentation?)>

<!ATTLIST failure

from CDATA #REQUIRED

guard CDATA #IMPLIED

 condition (success | failure | technical-failure | business-failure | any) "any"

>

<!ELEMENT start (documentation?)>

<!ATTLIST start

to CDATA #REQUIRED

>

<!ELEMENT multi-party-collaboration (documentation?, business-partner+)>

<!ATTLIST multi-party-collaboration

name CDATA #REQUIRED

>

<!ELEMENT business-partner (documentation?, performs+)>

<!ATTLIST business-partner

name CDATA #REQUIRED

>

<!ELEMENT performs (documentation?)>

<!ATTLIST performs

service CDATA #REQUIRED

role CDATA #REQUIRED

>

5.3 XML to UML cross-reference

The following is a table that references the XML element names in the DTD to their counterparts in the UML specification schema.

	XML Element
	Schema Element

	attribute
	Attribute

	binary- collaboration
	Binary Collaboration

	business- partner- Role
	Business Partner Role

	business- transaction- activity
	Business Transaction Activity

	business-transaction
	Business Transaction,

Requesting Business Activity,

Responding Business Activity

	collaboration-activity
	Collaboration Activity

	content
	Content

	data-type
	Basic Information Entity

	document
	Structured Document

	documentation
	None (Should be added)

	document-set
	DocumentSet

	ebXml Process Specification
	ebXml Process Specification

	failure
	Transition, Failure.

(Failure state is implicitly created)

	multi-party- collaboration
	MultiParty Collaboration

	package
	Package

	performs
	Performs

	request
	Document Envelope and “requesting” relation.

“Result” and associated relation to document set.

Potentially creates the document set.

	response
	Document Envelope and “responding” relation will be created by the first response.

“Result” and associated relation to document set.

Potentially creates the document set.

	start
	Defines a start state

	success
	Transition, Success (Success state is implicitly created)

	sync-state
	SyncState

	timing
	

	transition
	Transition

	unstructured
	Unstructured Document

	
	

5.4 Scoped Name Reference

Specification elements reference other specification elements by name. EbXML specification element names are all contained within a name scope, usually a package. The set of packages describes a hierarchical name space, much like a directory structure.

The name of the element defined by it’s “name” attribute is the “simple name” of the element. The simple name is sufficient to reference that element within the same name scope or any parent name scope. Simple names may only contain the characters: a—z, A..Z, 0..9, “_”.

The name scope that contains another named element is referred to as the “parent” of that named element and the contained element is the “child” of the parent scope.

The “current” name scope is the one from which the scoped name reference is made.

A simple name is “in scope”, that is can be resolved, if it is in the current name scope or a parent name scope.

To access elements in other name scopes the name reference must be qualified.

A name qualifier shall precede the simple name with a slash (“/”) character separating the two names. The qualifying name shall specify the simple name of the scope in which the simple name may be found. Since a package also has a name within a name scope, it can also be qualified. Thus qualified names my reference any depth in the namespace hierarchy.

The first simple name in a qualified name shall be the root. The current name space shall be searched for the root and, if found, shall resolve that part of the name. If the root is not found in the current name scope the parent scope shall be searched, recursively, until the root is found. If the scoped name starts with “/” the root namespace shall be the one defined by EbXmlProcessSpecification.

Examples of scoped names:

“Foo” (Simple name)

“Billing/invoice” (Name “invoice” found in “Billing” package)

“/accounting/billing/foo” (name “foo” found in “billing” package found in “accounting” package which is in the ebXmlProcessSpecification)

5.5 Sample XML document against above DTD

<?xml version="1.0"?>

<!DOCTYPE EbXmlProcessSpecification SYSTEM "ebXmlSpecificationDTD091.dtd">

<EbXmlProcessSpecification name="GenericQuoteOrder"

 version="1.1" uuid="[1234-5678-901234]">

<package name="Ordering">

 <data-type name="currency"/>

 <document name="QuoteRequest">

 <documentation>

 This is an example of a minimal order or quote.

 </documentation>

 <attribute name="ID" type="String" required="true"/>

 <attribute name="customerID" type="String" required="true"/>

 <attribute name="Items" type="LineItem" multiple="true"/>

</document>

 <document-set name="QuoteRequestSet">

 <content name="QuoteRequest" type="QuoteRequest" />

 </document-set>

 <document name="Order" supertype="QuoteRequest" isTamperProof="true">

<attribute name="total" type="Decimal" required="true"/>

 <attribute name="creditCard" type="String" />

</document>

 <document-set name="OrderSet" isConfidential="true">

 <content name="Order" type="Order" isSignatureEntity="true"/>

 </document-set>

 <unstructured name="image" mimeType="image"/>

 <document name="LineItem">

 <documentation>

 This is an example of a minimal order line item, used as an attribute

 in order and quote.

 </documentation>

<attribute name="partID" type="String" required="true"/>

<attribute name="specialInstructions" type="String"/>

<attribute name="quantity" type="Float" required="true"/>

<attribute name="price" type="Decimal" required="false"/>

<attribute name="picture" type="image"/>

 </document>

<document name="OrderConfirmation">

<attribute name="ID" type="String" required="true"/>

<attribute name="OrderNumber" type="Integer"/>

<attribute name="customerID" type="String" required="true"/>

<attribute name="total" type="Currency" required="true"/>

<attribute name="expectedShipDate" type="Date"/>

</document>

 <document-set name="OrderConfirmationSet">

 <content name="OrderConfirmation" type="OrderConfirmation" isAuthenticated="true"/>

 </document-set>

<document name="OrderDenied">

<attribute name="ID" type="Integer" required="true"/>

<attribute name="customerID" type="String" required="true"/>

<attribute name="reason" type="Text"/>

</document>

 <document-set name="OrderDeniedSet">

 <content name="OrderDenied" type="OrderDenied" />

 </document-set>

<document name="Quote">

<attribute name="QuoteNumber" type="Integer"/>

<attribute name="Request" type="QuoteRequest" required="true"/>

<attribute name="Price" type="Currency" required="true"/>

<attribute name="Delivery" type="Date" required="false"/>

<attribute name="GoodUntil" type="Date" required="false"/>

</document>

 <document-set name="QuoteSet">

 <content name="Quote" type="Quote" />

 </document-set>

<document name="ShippingNotice">

<attribute name="ID" type="String" required="true"/>

<attribute name="OrderNumber" type="Integer"/>

<attribute name="customerID" type="String" required="true"/>

<attribute name="shipDate" type="Date"/>

</document>

 <document-set name="ShippingNoticeSet">

 <content name="ShippingNotice" type="ShippingNotice" />

 </document-set>

<document name="PaymentNotice">

<attribute name="ID" type="String" required="true"/>

<attribute name="OrderNumber" type="Integer"/>

<attribute name="customerID" type="String" required="true"/>

<attribute name="amount" type="Currency"/>

<attribute name="payDate" type="Date"/>

</document>

 <document-set name="PaymentNoticeSet">

 <content name="PaymentNotice" type="PaymentNotice" />

 </document-set>

<!-- the OrderBT business transaction specifies that an "Order"

 document will initiate the transaction and that an OderConfirmation

 will be a successfull reply and that an "OrderDenied" document will

 be a failure reply (failure indicating that a business commitement

 was not made) -->

 <business-transaction name="OrderBT" isNonRepudiationRequired="true">

<request type="OrderSet"/>

<response type="OrderConfirmationSet" status="success"/>

<response type="OrderDeniedSet" status="failure"/>

</business-transaction>

 <business-transaction name="QuoteBT" timeToPerform="1" timeUnit="days">

<request type="QuoteRequestSet"/>

<response type="QuoteSet" status="success"/>

 </business-transaction>

 <business-transaction name="ShippingNotice" isSecureTransportRequired="false" >

<request type="ShippingNoticeSet"/>

</business-transaction>

<business-transaction name="PaymentNotice">

<request type="PaymentNoticeSet"/>

</business-transaction>

<!-- the "OrderCollaboration" specifies that it will start with an "OrderBT"

 business-transaction-activity which indicates the buy will

 initiate it. If the order is confirmed it will. If the

 order is confirmed it will proceed to a "Shipping Notice" from

 the sell role and then to a "PaymentNotice" from the buy role.

 ORderDenied from the OrderBT activity will conclude the

 collaboration with a failure.

 -->

 <binary-collaboration name="OrderCollaboration" initiator="buy"

 responder="sell" timeToPerform="2" timeUnit="days">

<business-transaction-activity name="OrderBT" from="buy" to="sell"/>

<business-transaction-activity name="ShippingNotice" from="sell" to="buy"/>

<business-transaction-activity name="PaymentNotice" from="buy" to="sell"/>

<start to="OrderBT"/>

<transition from="OrderBT" guard="OrderConfirmationSet" to="ShippingNotice"/>

<transition from="ShippingNotice" to="PaymentNotice"/>

<success from="PaymentNotice"/>

<failure from="OrderBT" condition="failure"/>

</binary-collaboration>

<!-- The "QuoteOrderCollaboration" starts with a QuoteBT business transaction

 and then proceeds to reuse the "OrderCollaboration".

 -->

<binary-collaboration name="QuoteOrderCollaboration" initiator="buy" responder="sell">

<business-transaction-activity name="QuoteBT" from="buy" to="sell"/>

<!-- here we see that the name and type of an activity

 does not have to be the same as we use the OrderCollaboration

 as an activity -->

<collaboration-activity name="OrderIt" type="OrderCollaboration" from="buy" to="sell"/>

<start to="QuoteBT"/>

<transition from="QuoteBT" to="OrderIt"/>

<success from="OrderIt" guard="success"/>

<failure from="OrderIt" guard="failure"/>

</binary-collaboration>

<!-- in the BuySell multi-party collaboration we define the business partners

 "buyer" and "seller" which perform the "QuoteOrderCollaboration" -->

<multi-party-collaboration name="BuySell">

 <business-partner name="buyer">

<performs service="QuoteOrderCollaboration" role="buy"/>

 </business-partner>

 <business-partner name="seller">

<performs service="QuoteOrderCollaboration" role="sell"/>

 </business-partner>

</multi-party-collaboration>

 </package> <!-- End of Ordering-->

 <package name="shipping">

<!-- A sender requests shipping from a carrier -->

 <document name="party">

 <attribute name="name" type="String" required="true"/>

 <attribute name="address1" type="String" />

 <attribute name="address2" type="String" />

 <attribute name="city" type="String" />

 <attribute name="state" type="String" />

 <attribute name="country" type="String" />

 <attribute name="postCode" type="String" />

 <attribute name="phone" type="String" />

 <attribute name="ParyID" type="String" required="true"/>

 <attribute name="contact" type="String" />

 </document>

 <unstructured name="AnyDocument" />

 <document name="Waybill">

 <attribute name="shipFrom" type="party" required="true"/>

 <attribute name="shipTo" type="party" required="true"/>

 <attribute name="via" type="String" />

 <attribute name="shipDate" type="String" required="true"/>

 <attribute name="ShipID" type="string" required="true"/>

 <attribute name="content" type="String" />

 <attribute name="instructions" type="Text" />

 <attribute name="legalDocuments" type="AnyDocument" multiple="true" />

 </document>

 <document-set name="WaybillSet">

 <content name="Waybill" type="Waybill" />

 </document-set>

 <document name="PickupReceipt">

 <attribute name="id" type="String" />

 <attribute name="when" type="DateType" />

 <attribute name="from" type="party" />

 </document>

 <document-set name="PickupReceiptSet">

 <content name="PickupReceipt" type="PickupReceipt" />

 </document-set>

 <document name="WaybillIncomplete">

 <attribute name="waybill" type="WayBillSet" />

 <attribute name="reason" type="Text" />

 </document>

 <document-set name="WaybillIncompleteSet">

 <content name="WaybillIncomplete" type="WaybillIncomplete" />

 </document-set>

 <document name="DeliveryReceipt" >

 <attribute name="ID" type="String" required="true" />

 <attribute name="party" type="Party" required="true" />

 <attribute name="when" type="Date" />

 </document>

 <document-set name="DeliveryReceiptSet">

 <content name="DeliveryReceipt" type="DeliveryReceipt" isTamperProof="true"/>

 </document-set>

 <business-transaction name="ShippingBT" isIntelligibleCheckRequired="true">

<request type="WaybillSet"/>

<response type="PickupReceiptSet" status="success"/>

<response type="WaybillIncompleteSet" status="failure"/>

</business-transaction>

<business-transaction name="DeliveryAcknoledgementBT">

<request type="DeliveryReceiptSet"/>

</business-transaction>

<binary-collaboration name="ShipCollaboration" initiator="send" responder="ship">

<business-transaction-activity name="ShippingBT" from="send" to="ship"/>

<business-transaction-activity name="DeliveryAcknowledgementBT" from="ship" to="send"/>

<start to="ShippingBT"/>

<transition from="ShippingBT" condition="success" to="DeliveryAcknowledgementBT"/>

<success from="DeliveryAcknowledgementBT"/>

<failure from="ShippingBT" guard="failure"/>

</binary-collaboration>

<!-- Multiparty business collaboration : Synthetizing two service interactions

 BuySell & Ship across three kinds of business partners "buyer" "seller" and

 "carrier". Note that the "seller" performs two roles within this collaboration.

 -->

<multi-party-collaboration name="BuySellShip">

 <business-partner name="buyer">

 <performs service="ordering/OrderCollaboration" role="buy"/>

 </business-partner>

 <business-partner name="seller">

 <performs service="ordering/OrderCollaboration" role="sell"/>

<performs service="ShipCollaboration" role="send"/>

 </business-partner>

 <business-partner name="carrier">

<performs service="ShipCollaboration" role="ship"/>

 </business-partner>

</multi-party-collaboration>

</package>

</EbXmlProcessSpecification>

6 Common Modeling Elements

6.1 Datatyping
XML currently has limited datatyping capability for attributes and no datatyping capability for elements. EbXML recognizes that datatyping is a requirement for business transactions using XML. The World Wide Web Consortium (W3C) has defined a group of core datatypes as part of the XML Schema Specification (XML Schema Part 2: Datatypes, W3C Candidate Recommendation, 24 October 2000). The datatypes defined by the W3C will be used for global datatypes.

6.1.1 Global Datatypes

The following two charts defines the global datatypes that will be used for the ebXML Business Process Specification Schema. The first chart defines the datatypes that are currently available for use natively within XML DTDs. The second chart defines the proposed datatypes available for use with W3C XML Schema Specification.

	Datatypes Natively Available in DTDs

	Datatype
	Definition

	ID
	ID represents the ID attribute type from [XML 1.0 Recommendation (Second Edition)].

	IDREF
	IDREF represents the IDREF attribute type from [XML 1.0 Recommendation (Second Edition)].

	IDREFS
	IDREFS represents the IDREFS attribute type from [XML 1.0 Recommendation (Second Edition)].

	CDATA
	CDATA (Character Data) represents white space normalized strings.

	ENTITY
	ENTITY represents the ENTITY attribute type from [XML 1.0 Recommendation (Second Edition)].

	ENTITIES
	ENTITIES represents the ENTITIES attribute type from [XML 1.0 Recommendation (Second Edition)].

	NMTOKEN
	NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 Recommendation (Second Edition)].

	NMTOKENS
	NMTOKENS represents the NMTOKENS attribute type from [XML 1.0 Recommendation (Second Edition)].

	NOTATION
	NOTATION represents the NOTATION attribute type from [XML 1.0 Recommendation (Second Edition)].

The table below shows the datatypes that are not natively provided in DTDs. These datatypes will be available in W3C Schema Specification, as well as the Regular Language description for XML (RELAX) schema language that has recently been submitted to ISO.

Although the datatypes are not currently natively available in DTDs (native XML parsers cannot validate) processes can be used to validate the datatypes external from the XML parser.

	Datatypes Not Available in DTDs

	Datatype
	Definition

	
	

	string
	The string datatype represents character strings in XML.

	boolean
	The boolean datatype has the value space required to support the mathematical concept of binary-valued logic: {true, false}.

	float
	The float datatype corresponds to the IEEE single-precision 32-bit floating point type [IEEE 754-1985].

	double
	The double datatype corresponds to IEEE double-precision 64-bit floating point type [IEEE 754-1985].

	decimal
	The decimal datatype represents arbitrary precision decimal numbers.

	timeDuration
	The timeDuration datatype represents a duration of time.

	recurringDuration
	The recurringDuration datatype represents a specific period of time that recurs with a specific frequency, starting from a specific point in time.

	binary
	The binary datatype represents arbitrary binary data.

	uriReference
	The uriReference datatype represents a Uniform Resource Indentifier (URI) Reference.

	Qname
	QName represents XML qualified names.

	token
	The token datatype represents tokenized strings.

	language
	The language datatype represents natural language identifiers as defined by [RFC 1766].

	Name
	Name represents XML Names.

	NCName
	NCName represents XML "non-colonized" Names.

	integer
	The integer datatype is derived from decimal by fixing the value of scale to be 0.

	nonPositiveInteger
	nonPositiveInteger is derived from integer by setting the value of maxInclusive to be 0.

	negativeInteger
	The negativeInteger datatype is derived from nonPositiveInteger by setting the value of maxInclusive to be -1.

	long
	the long datatype is derived from integer by setting the value of maxInclusive to be 9223372036854775807 and minInclusive to be -9223372036854775808. The base type of long is integer.

	int
	The int datatype is derived from long by setting the value of maxInclusive to be 2147483647 and minInclusive to be -2147483648. The base type of int is long.

	short
	short is derived from int by setting the value of maxInclusive to be 32767 and minInclusive to be -32768. The base type of short is int.

	byte
	The byte datatype is derived from short by setting the value of maxInclusive to be 127 and minInclusive to be -128. The base type of byte is short.

	nonNegativeIneger
	The nonNegativeInteger datatype is derived from integer by setting the value of minInclusive to be 0.

	unsignedLong
	The unsignedLong datatype is derived from nonNegativeInteger by setting the value of maxInclusive to be 18446744073709551615. The base type of unsignedLong is nonNegativeInteger.

	unsignedInt
	The unsignedInt datatype is derived from unsignedLong by setting the value of maxInclusive to be 4294967295. The base type of unsignedInt is unsignedLong.

	unsignedShort
	The unsignedShort datatype is derived from unsignedInt by setting the value of maxInclusive to be 65535. The base type of unsignedShort is unsignedInt.

	unsignedByte
	The unsignedByte datatype is derived from unsignedShort by setting the value of maxInclusive to be 255. The base type of unsignedByte is unsignedShort.

	positiveInteger
	The positiveInteger datatype is derived from nonNegativeInteger by setting the value of minInclusive to be 1.

	timeInstant
	The timeInstant datatype represents a specific instant of time.

	time
	The time datatype represents an instant of time that recurs every day.

	timePeriod
	The timePeriod datatype represents a specific period of time with a give start and end.

	date
	The date datatype represents a timePeriod that starts at midnight of a specified day and lasts until midnight the following day.

	month
	The month datatype represents a timePeriod that starts at midnight on the first day of the month and lasts until the midnight that ends the last day of the month.

	year
	The year datatype represents a timePeriod that starts at the midnight that starts the first day of the year and ends at the midnight that ends the last day of the year.

	century
	The century datatype represents a timePeriod that starts at the midnight that starts the first day of the century and ends at the midnight that ends that last day of the century.

	recurringDate
	The recurringDate datatype is a date that recurs, specifically a day of the year such as the third of May.

	recurringDay
	The recurringDay datatype is a day that recurs, specifically a day of the month such as the 5th of the month.

6.1.2 Local Datatypes

Local datatypes used within ebXML, i.e., currency, will be developed by the ebXML Core Components Working Group.

6.2 Signal structures

Since signals do not differ in structure from business transaction to business transaction, they are defined once and for all, and their definition is implied. Here are the DTD’s for receiptAcknowledgment and acceptanceAcknowledgement (from the RosettaNet website, courtesy of RosettaNet, and Edifecs).

6.2.1 ReceiptAcknowledgment DTD

<!--

 RosettaNet XML Message Schema.

 http://www.rosettanet.org

 RosettaNet XML Message Schema.

 Receipt Acknowledgement

 Version 1.1

 Created using Edifecs Commerce SpecBuilder.

 http://www.edifecs.com

 http://www.commercedesk.com

 Build # 22

-->

<!ENTITY % common-attributes "id CDATA #IMPLIED">

<!ELEMENT ReceiptAcknowledgement (

 fromRole ,

 NonRepudiationInformation? ,

 receivedDocumentDateTime ,

 receivedDocumentIdentifier ,

 thisMessageDateTime ,

 thisMessageIdentifier ,

 toRole) >

<!ELEMENT fromRole

 (PartnerRoleDescription) >

<!ELEMENT PartnerRoleDescription (

 ContactInformation? ,

 GlobalPartnerRoleClassificationCode ,

 PartnerDescription) >

<!ELEMENT ContactInformation (

 contactName ,

 EmailAddress ,

 telephoneNumber) >

<!ELEMENT contactName

 (FreeFormText) >

<!ELEMENT FreeFormText

 (#PCDATA) >

<!ATTLIST FreeFormText

 xml:lang CDATA #IMPLIED >

<!ELEMENT EmailAddress

 (#PCDATA) >

<!ELEMENT telephoneNumber

 (CommunicationsNumber) >

<!ELEMENT CommunicationsNumber

 (#PCDATA) >

<!ELEMENT GlobalPartnerRoleClassificationCode

 (#PCDATA) >

<!ELEMENT PartnerDescription (

 BusinessDescription ,

 GlobalPartnerClassificationCode) >

<!ELEMENT BusinessDescription (

 GlobalBusinessIdentifier ,

 GlobalSupplyChainCode) >

<!ELEMENT GlobalBusinessIdentifier

 (#PCDATA) >

<!ELEMENT GlobalSupplyChainCode

 (#PCDATA) >

<!ELEMENT GlobalPartnerClassificationCode

 (#PCDATA) >

<!ELEMENT NonRepudiationInformation (

 GlobalDigestAlgorithmCode ,

 OriginalMessageDigest) >

<!ELEMENT GlobalDigestAlgorithmCode

 (#PCDATA) >

<!ELEMENT OriginalMessageDigest

 (#PCDATA) >

<!ELEMENT receivedDocumentDateTime

 (DateTimeStamp) >

<!ELEMENT DateTimeStamp

 (#PCDATA) >

<!ELEMENT receivedDocumentIdentifier

 (ProprietaryDocumentIdentifier) >

<!ELEMENT ProprietaryDocumentIdentifier

 (#PCDATA) >

<!ELEMENT thisMessageDateTime

 (DateTimeStamp) >

<!ELEMENT thisMessageIdentifier

 (ProprietaryMessageIdentifier) >

<!ELEMENT ProprietaryMessageIdentifier

 (#PCDATA) >

<!ELEMENT toRole

 (PartnerRoleDescription) >

6.2.2 AcceptanceAcknowledgement DTD

<!--

 RosettaNet XML Message Schema.

 http://www.rosettanet.org

 RosettaNet XML Message Schema.

 Acceptance Acknowledgement

 Version 1.1

 Created using Edifecs Commerce SpecBuilder.

 http://www.edifecs.com

 http://www.commercedesk.com

 Build # 22

-->

<!ENTITY % common-attributes "id CDATA #IMPLIED">

<!ELEMENT AcceptanceAcknowledgement (

 fromRole ,

 receivedDocumentDateTime ,

 receivedDocumentIdentifier ,

 thisMessageDateTime ,

 thisMessageIdentifier ,

 toRole) >

<!ELEMENT fromRole

 (PartnerRoleDescription) >

<!ELEMENT PartnerRoleDescription (

 ContactInformation? ,

 GlobalPartnerRoleClassificationCode ,

 PartnerDescription) >

<!ELEMENT ContactInformation (

 contactName ,

 EmailAddress ,

 telephoneNumber) >

<!ELEMENT contactName

 (FreeFormText) >

<!ELEMENT FreeFormText

 (#PCDATA) >

<!ATTLIST FreeFormText

 xml:lang CDATA #IMPLIED >

<!ELEMENT EmailAddress

 (#PCDATA) >

<!ELEMENT telephoneNumber

 (CommunicationsNumber) >

<!ELEMENT CommunicationsNumber

 (#PCDATA) >

<!ELEMENT GlobalPartnerRoleClassificationCode

 (#PCDATA) >

<!ELEMENT PartnerDescription (

 BusinessDescription ,

 GlobalPartnerClassificationCode) >

<!ELEMENT BusinessDescription (

 GlobalBusinessIdentifier ,

 GlobalSupplyChainCode) >

<!ELEMENT GlobalBusinessIdentifier

 (#PCDATA) >

<!ELEMENT GlobalSupplyChainCode

 (#PCDATA) >

<!ELEMENT GlobalPartnerClassificationCode

 (#PCDATA) >

<!ELEMENT receivedDocumentDateTime

 (DateTimeStamp) >

<!ELEMENT DateTimeStamp

 (#PCDATA) >

<!ELEMENT receivedDocumentIdentifier

 (ProprietaryDocumentIdentifier) >

<!ELEMENT ProprietaryDocumentIdentifier

 (#PCDATA) >

<!ELEMENT thisMessageDateTime

 (DateTimeStamp) >

<!ELEMENT thisMessageIdentifier

 (ProprietaryMessageIdentifier) >

<!ELEMENT ProprietaryMessageIdentifier

 (#PCDATA) >

<!ELEMENT toRole

 (PartnerRoleDescription) >

6.2.3 Exception Signal DTD

<!--

 RosettaNet XML Message Schema.

 http://www.rosettanet.org

 RosettaNet XML Message Schema.

 Exception

 Version 1.1

 Created using Edifecs Commerce SpecBuilder.

 http://www.edifecs.com

 http://www.commercedesk.com

 Build # 22

-->

<!ENTITY % common-attributes "id CDATA #IMPLIED">

<!ELEMENT Exception (

 fromRole? ,

 reason ,

 theMessageDatetime ,

 theOffendingDocumentDateTime? ,

 theOffendingDocumentIdentifier? ,

 thisMessageIdentifier ,

 toRole?) >

<!ELEMENT fromRole

 (PartnerRoleDescription) >

<!ELEMENT PartnerRoleDescription (

 ContactInformation? ,

 GlobalPartnerRoleClassificationCode? ,

 PartnerDescription?) >

<!ELEMENT ContactInformation (

 contactName? ,

 EmailAddress? ,

 telephoneNumber?) >

<!ELEMENT contactName

 (FreeFormText) >

<!ELEMENT FreeFormText

 (#PCDATA) >

<!ATTLIST FreeFormText

 xml:lang CDATA #IMPLIED >

<!ELEMENT EmailAddress

 (#PCDATA) >

<!ELEMENT telephoneNumber

 (CommunicationsNumber) >

<!ELEMENT CommunicationsNumber

 (#PCDATA) >

<!ELEMENT GlobalPartnerRoleClassificationCode

 (#PCDATA) >

<!ELEMENT PartnerDescription (

 BusinessDescription? ,

 GlobalPartnerClassificationCode?) >

<!ELEMENT BusinessDescription (

 GlobalBusinessIdentifier? ,

 GlobalSupplyChainCode?) >

<!ELEMENT GlobalBusinessIdentifier

 (#PCDATA) >

<!ELEMENT GlobalSupplyChainCode

 (#PCDATA) >

<!ELEMENT GlobalPartnerClassificationCode

 (#PCDATA) >

<!ELEMENT reason

 (FreeFormText) >

<!ELEMENT theMessageDatetime

 (DateTimeStamp) >

<!ELEMENT DateTimeStamp

 (#PCDATA) >

<!ELEMENT theOffendingDocumentDateTime

 (DateTimeStamp) >

<!ELEMENT theOffendingDocumentIdentifier

 (ProprietaryDocumentIdentifier) >

<!ELEMENT ProprietaryDocumentIdentifier

 (#PCDATA) >

<!ELEMENT thisMessageIdentifier

 (ProprietaryMessageIdentifier) >

<!ELEMENT ProprietaryMessageIdentifier

 (#PCDATA) >

<!ELEMENT toRole

 (PartnerRoleDescription) >

7 Production Rules

The Specification Production rules provide the prescriptive definition necessary to translate a UML Specification Model into an XML Specification Document and the well-formed rules necessary to populate an XML Specification Document.

There are two relevant mappings from the UML version of the specification schema to the XML version.

The first is the transform of a UML instance of a business process specification to an XML document conforming to the schema specification.

The second is the transform of a UML instance of a document definition to a DTD.

Since the UML form of the Specification Schema is a MOF compliant model, we are proposing the use of XMI as the production rules for both these two transforms.

In addition, ebXML may supply XSLT transforms to get the XML document and/or DTD into an even simpler, easilier human readable form, as illustrated by the DTD and sample XML in the prior sections.

8 Business Service Interaction Patterns

This section provides the definition of predefined service interaction patterns that are used to define interactions based on the type of transaction, the type of role(s) that are being performed by the partners and the timing/business signals employed.

8.1 Service Component Interaction Pattern

Networked business services and business agents are configured to execute business transactions and business collaboration agreements. A message sequence is used to specify network component interactions. The following network component interactions are possible.

· Service-Service.

· Agent-Service-Service.

· Service-Service-Agent.

· Service-Agent-Service.

· Agent-Service-Agent

For each Business Transaction one or more of the Service Component Interaction Patterns may be applicable.

8.1.1 Service-Service

Business Transaction Activity
Pattern Nomenclature: Service-Service(BTA_NR)

Pattern Description: Time to perform equals time to acknowledge acceptance and no responding business document.

[image: image5.wmf]

 :

OriginatingService

 :

RespondingService

1.

request(BusinessActionMeaaa

ge)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

Figure 1. Service-Service Interaction Pattern

Pattern Nomenclature: Service-Service(BTA_NACC)

Pattern Description: Time to perform equals time to acknowledge acceptance and a responding business document.

[image: image6.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

1.2. response(BusinessAction)

1.2.1. signal(ReceiptAcknowledgement)

Figure 2. Service-Service Interaction Pattern

Pattern Nomenclature: Service-Service(BTA_ACC)

Pattern Description: Time to perform is greater than time to acknowledge acceptance.

[image: image7.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

1.3. response(BusinessAction)

1.2. signal(AcceptanceAcknowledgement)

1.3.1. signal(ReceiptAcknowledgement)

Figure 3. Service-Service Interaction Pattern

Query/Response Activity, Request/Response Activity and Request/Confirm Activity

Pattern Nomenclature: Service-Service(NACC)

Pattern Description: Time to acknowledge acceptance is not applicable and a responding business document.

[image: image8.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessAction)

1.2. response(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

1.2.1. signal(ReceiptAcknowledgement)

Figure 4. Service-Service Interaction Pattern

Information Distribution Activity and Notification Activity

Pattern Nomenclature: Service-Service(ASYNC)

Pattern Description: Time to acknowledge acceptance is not applicable and no responding business document.
[image: image9.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

Figure 5. Service-Service Interaction Pattern

8.1.2 Agent-Service-Service

Business Transaction Activity
Pattern Nomenclature: Agent-Service-Service(BTA_NR)

Pattern Description: Time to perform equals time to acknowledge acceptance and no responding business document.

[image: image10.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.2. return(BusinessSignal)

Figure 6. Agent-Service-Service Interaction Pattern

Pattern Nomenclature: Agent-Service-Service(BTA_NACC)

Pattern Description: Time to perform equals time to acknowledge acceptance and a responding business document.

[image: image11.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. response(BusinessAction)

1.2. return(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgement)

Figure 7. Agent-Service-Service Interaction Pattern

Pattern Nomenclature: Agent-Service-Service(BTA_ACC)

Pattern Description: Time to perform is greater than time to acknowledge acceptance.

[image: image12.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.1.3. response(BusinessAction)

1.2. return(BusinessAction)

1.1.3.1. signal(ReceiptAcknowledgement)

Figure 8. Agent-Service-Service Interaction Pattern

Query/Response Activity, Request/Response Activity and Request/Confirm Activity

Pattern Nomenclature: Agent-Service-Service(NACC)

Pattern Description: Time to acknowledge acceptance is not applicable and a responding business document.

[image: image13.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.2. response(BusinessAction)

1.2. return(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgement)

1.1.1. signal(ReceiptAcknowledgement)

Figure 9. Agent-Service-Service Interaction Pattern

Information Distribution Activity and Notification Activity

Pattern Nomenclature: Agent-Service-Service(ASYNC)

Pattern Description: Time to acknowledge acceptance is not applicable and no responding business document.
[image: image14.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

Figure 10. Agent-Service-Service Interaction Pattern

8.1.3 Service-Service-Agent

Business Transaction Activity
Pattern Nomenclature: Service-Service-Agent(BTA_NR)

Pattern Description: Time to perform equals time to acknowledge acceptance and no responding business document.

[image: image15.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(AcceptanceAcknowledgement)

Figure 11. Service-Service-Agent Interaction Pattern

Pattern Nomenclature: Service-Service-Agent(BTA_NACC)

Pattern Description: Time to perform equals time to acknowledge acceptance and a responding business document.

[image: image16.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

1.2. response(BusinessAction)

1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 12. Service-Service-Agent Interaction Pattern

Pattern Nomenclature: Service-Service(BTA_ACC)

Pattern Description: Time to perform is greater than time to acknowledge acceptance.

[image: image17.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

1.3. response(BusinessAction)

1.3.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 13. Service-Service-Agent Interaction Pattern

Query/Response Activity, Request/Response Activity and Request/Confirm Activity

Pattern Nomenclature: Service-Service-Agent(NACC)

Pattern Description: Time to acknowledge acceptance is not applicable and a responding business document.

[image: image18.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessAction)

1.2. response(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 14. Service-Service-Agent Interaction Pattern

Information Distribution Activity and Notification Activity

Pattern Nomenclature: Service-Service-Agent(ASYNC)

Pattern Description: Time to acknowledge acceptance is not applicable and no responding business document.
[image: image19.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(ReceiptAcknowledgement)

Figure 15. Service-Service-Agent Interaction Pattern

8.1.4 Service-Agent-Service

Business Transaction Activity
Pattern Nomenclature: Service-Agent-Service(BTA_NR)

Pattern Description: Time to perform equals time to acknowledge acceptance and no responding business document.

[image: image20.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

 :

OriginatingAgent

1. callTxn()

1.1. return(BusinessAction)

1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. signal(AcceptanceAcknowledgement)

2. queryTxn()

2.1. return(BusinessSignal)

Figure 16. Service-Agent-Service Interaction Pattern

Pattern Nomenclature: Service-Service(BTA_NACC)

Pattern Description: Time to perform equals time to acknowledge acceptance and a responding business document.

[image: image21.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. return(BusinessAction)

1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessAction)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

Figure 17. Service-Agent-Service Interaction Pattern

Pattern Nomenclature: Service-Agent-Service(BTA_ACC)

Pattern Description: Time to perform is greater than time to acknowledge acceptance.

[image: image22.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. return(BusinessAction)

1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. signal(AcceptanceAcknowledgement)

1.1.1.1.3. response(BusinessAction)

1.1.1.1.3.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

Figure 18. Service-Agent-Service Interaction Pattern

Query/Response Activity, Request/Response Activity and Request/Confirm Activity

Pattern Nomenclature: Service-Agent-Service(NACC)

Pattern Description: Time to acknowledge acceptance is not applicable and a responding business document.

[image: image23.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. return(BusinessAction)

1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessAction)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

Figure 19. Service-Agent-Service Interaction Pattern

Request/Confirm Activity

Pattern Nomenclature: Service-Agent-Service(REQ)

Pattern Description: Time to acknowledge acceptance is not applicable and a responding business document.

[image: image24.wmf] :

OriginatingService

 :

OriginatingAgent

 :

RespondingAgent

 :

RespondingService

1. callTxn()

1.1. return(BusinessAction)

1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessAction)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

Figure 20. Service-Agent-Service interaction Pattern

Information Distribution Activity and Notification Activity

Pattern Nomenclature: Service-Agent-Service(ASYNC)

Pattern Description: Time to acknowledge acceptance is not applicable and no responding business document.
[image: image25.wmf] :

OriginatingService

 :

OriginatingAgent

 :

RespondingAgent

 :

RespondingService

1. callTxn()

1.1. return(BusinessAction)

1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgement)

2. callTxn()

2.1. return(BusinessSignal)

Figure 21. Service-Agent-Service Interaction Pattern

8.1.5 Agent-Service-Agent

Business Transaction Activity
Pattern Nomenclature: Agent-Service-Agent(BTA_NR)

Pattern Description: Time to perform equals time to acknowledge acceptance and no responding business document.

[image: image26.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(AcceptanceAcknowledgement)

Figure 22. Agent-Service-Agent Interaction Pattern

Pattern Nomenclature: Agent-Service-Agent(BTA_NACC)

Pattern Description: Time to perform equals time to acknowledge acceptance and a responding business document.

[image: image27.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

1.1.2. response(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 23. Agent-Service-Agent Interaction Pattern

Pattern Nomenclature: Agent-Service-Agent(BTA_ACC)

Pattern Description: Time to perform is greater than time to acknowledge acceptance.

[image: image28.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

1.1.2. signal(AcceptanceAcknowledgement)

1.1.3. response(BusinessAction)

1.1.3.1. signal(ReceiptAcknowledgement)

Figure 24. Agent-Service-Agent Interaction Pattern

Query/Response Activity, Request/Response Activity and Request/Confirm Activity

Pattern Nomenclature: Agent-Service-Agent(NACC)

Pattern Description: Time to acknowledge acceptance is not applicable and a responding business document.
[image: image29.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. response(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessAction)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 25. Agent-Service-Agent Interaction Pattern

Information Distribution Activity and Notification Activity

Pattern Nomenclature: Agent-Service-Agent(ASYNC)

Pattern Description: Time to acknowledge acceptance is not applicable and no responding business document.
[image: image30.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

Figure 26. Agent-Service-Agent Interaction Pattern

References

NONE

9 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

Contact Information

Team Leader (Of the BP team):

 Paul Levine

 Telcordia Technologies, Inc.

 45 Knightsbridge Road

 Piscataway, N.J. 08854

 US

 Phone: 732-699-3042

 EMail: plevine@telcordia.com

Sub Team Lead (Of the context/MetamodelGroup) :

 Karsten Riemer

 Sun Microsystems

 1 Network Drive

 Burlington, MA 01803

 USA

 Phone: 781-442-2679

 EMail: karsten.riemer@sun.com

Editor (of this document):

 Karsten Riemer

 Sun Microsystems

 1 Network Drive

 Burlington, MA 01803

 USA

 Phone: 781-442-2679

 EMail: karsten.riemer@sun.com

Copyright Statement

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� This is the convention specified for RosettaNet commercial transactions.

_1038577243.doc

 :

OriginatingService

 :

RespondingService

1. request(BusinessActionMeaaage)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

