
Table of Contents Page
8 PATTERNS .. 1

8.1 BUSINESS PATTERNS ... 1
8.2 REQUIREMENTS PATTERNS .. 2
8.3 ANALYSIS PATTERNS .. 3

8.3.1 Timeout Exceptions ... 5
8.3.2 Business Protocol Exceptions ... 6
8.3.3 Pattern Property Modification Rules .. 6
8.3.4 Requesting Business Activity... 7
8.3.5 Object Flow... 7
8.3.6 Business Transaction Modeling Patterns.. 7

8.4 DESIGN PATTERNS ... 26
8.4.1 Service-Service.. 26
8.4.2 Agent-Service-Service ... 33
8.4.3 Service-Service-Agent ... 41
8.4.4 Service-Agent-Service ... 49
8.4.5 Agent-Service-Agent ... 58

8.5 BUSINESS INFORMATION STRUCTURE DESIGN PATTERNS.. 66
8.5.1 The Reference Design Pattern .. 66
8.5.2 Query/Response Business Document Design Pattern ... 69
8.5.3 Disjunction Design Pattern... 72
8.5.4 Reification Design Pattern.. 74
8.5.5 UML/XML Translation Design Pattern... 76
8.5.6 Business Document Design Pattern .. 78
8.5.7 Request/Response Business Document Design Pattern .. 80

8 Patterns

8.1 Business Patterns

At the time of this writing, UN/CEFACT has not specified any business patterns that
could be used in this workflow. There are efforts underway to discover reference
material applicable for e-Business.

8-2

8.2 Requirements Patterns

Patterns to describe business collaborations will be developed by UN/CEFACT and
added as they become available

8-3

8.3 Analysis Patterns

Business models may find it convenient to develop business transaction
design patterns to facilitate the development of their specifications. The
following six property-value conventions for business transactions have
proven useful in the application of the metamodel to existing business
requirements.
1. Business Transaction
2. Request / Confirm
3. Query / Response
4. Request / Response
5. Notification
6. Information Distribution
These conventions are applied by stereotyping the requesting business
activity with the following syntax.

Transaction Stereotype
Business Transaction «BusinessTransactionActivity»

Request / Confirm «RequestConfirmActivity»

Query / Response «QueryResponseActivity»

Request / Response «RequestResponseActivity»

Notification «NotificationActivity»

Information Distribution «InformationDistributionActivity»

The following table specifies the property-values for requesting business activities for
each of the business transaction stereotypes.

8-4

Tim
e

to
A

cknow
ledge

R
eceipt

Tim
e

to
A

cknow
ledge

A
cceptance

Tim
e to Perform

A
uthorization

R
equired

N
on-repudiation

of
O

rigin
and

C
ontent

N
on-repudiation

of R
eceipt

R
ecurrence

Business
Transaction 2hrs 6hr 24hr true true true 3

Request /
Confirm null Null 24hrs false false true 3

Request /
Response null Null 4hrs false false null 3

Query /
Response null Null 4hrs false false null 3

Notification 24hrs Null 24hrs false true true 3

Information
Distribution 24hrs null 24hrs false false false 3

The following table specifies the property-values for responding
business activities for each of the business transaction stereotypes.

Tim
e

to
A

cknow
ledge

R
eceipt

Tim
e

to
A

cknow
ledge

A
cceptance

Tim
e to Perform

A
uthorization

R
equired

N
on-repudiation

of
O

rigin
and

C
ontent

Business
Transaction 2hrs 6hr 24hr true true

Request /
Confirm 2hrs null 24hrs true false

Request /
Response null null 4hrs false false

Query /
Response null null 4hrs false false

Notification 24hrs null 24hrs false false

Information
Distribution 24hrs null 24hrs false false

8-5

It is recommended that the following stereotype be used on the
responding business activity when authorization is required for a
responding activity to respond to a business document request.

Business Activity Stereotype
Authorized Activity «AuthorizedActivity»

Another convention that makes the application of these stereotypes
easier is to only stereotype the requesting business activity when a
symmetrical business relationship is designed. With this convention the
time to perform, time to acknowledge receipt, time to acknowledge
acceptance, non-repudiation and authorization requirements are
assumed symmetrical and thus applicable equally to both the requesting
and responding business activities.

8.3.1 Timeout Exceptions

A time-out parameter shall be specified whenever a requesting
partner expects one or more responses to a business document
request. A requesting partner shall not remain in an infinite wait
state. There shall be a time-out parameter specified for each
expected response. There are four possible responses and
hence four potential time-out specifications:
Acknowledge Receipt. The time a responding role has to
acknowledge receipt of a business document.
Non-Substantive Acknowledge Business Acceptance. The time a
responding role has to non-substantively acknowledge business
acceptance of a business document.
Substantive Acknowledge Business Acceptance. The time a
responding role has to substantively acknowledge business
acceptance of a business document.

Perform Transaction. The time a business transaction has to
complete.
The time-out value for each of the time-out parameters is
absolute i.e. not relative to each other. All timers start when the
requesting business document is sent. The timer values shall
comply with the well-formedness rules in the previous section.
If the retry count is not zero and a time-out condition is signaled
for any of the expected responses then the original business
document shall be resent from the initiating partner role. The
original business document shall be sent even if responding
acknowledgements have already been received.

8-6

If an initiating partner receives a response after a time-out
condition is signaled and the original business document has
already been resent then this shall be ignored. A responding
partner that receives a business document from a retry shall
terminate their responding transaction for the previous business
document and the retry request shall be serviced.
Upon sending a business document retry, it SHALL be
guaranteed that the sending party resends an identical business
document, save for a timestamp. Otherwise, a receiving partner
shall be capable of rolling back an incoming business document
at any point in time through the acknowledgment interval,
acceptance interval, and back-end processing interval.
When the time to perform an activity equals the time to
acknowledge receipt or the time to acknowledge business
acceptance then the highest priority time out exception shall be
used when the originator provides a reason for revoking their
original business document offer. The time to perform exception
is lower priority than both the time to acknowledge receipt and
the time to acknowledge business acceptance.

8.3.2 Business Protocol Exceptions

A business protocol exception terminates the business
transaction. The following are business protocol exceptions.
1. Negative acknowledgement of receipt. The structure/schema

of a message is invalid.
2. Negative acknowledgement of acceptance. The business

rules are violated.
3. Performance exceptions. The requested business action

cannot be performed.
4. Sequence exceptions. The order or type of a business

document or business signal is incorrect.
5. Syntax exceptions. There is invalid punctuation, vocabulary

or grammar in the business document or business signal.
6. Authorization exceptions. Roles are not authorized to

participate in the business transaction.
7. Business process control exceptions. Business documents

are not signed for non-repudiation.
A responding role that throws a business protocol exception
signals the exception back to the requesting role and then
terminates the business transaction. A requesting role that
throws a business protocol exception terminates the transaction
and then sends a notification revoking the offending business
document request. The requesting role cannot send a business
signal to the responding role.

8.3.3 Pattern Property Modification Rules

8-7

The following rules apply when modifying design pattern
properties.
1. If the convention for a time property value is >0 then it

cannot be changed to NA.
2. If the convention for a time property value is NA then it

cannot be changed. This is because the change would
add or remove a role interaction that is not allowed, as it
will change the convention.

3. The non-repudiation values specified in the convention
cannot be changed except that both Query/Response
and Request/Confirm can be changed to non-repudiation
required. Changing any of the other non-repudiation
values would change the semantic meaning of the
business transaction.

4. The Authorization Required property can only be
changed to N. It cannot be changed to Y if it is already
set to N according to the convention.

8.3.4 Requesting Business Activity

Preconditions and post-conditions should be specified when there are
structure or content constraints that apply to the document when it is
used in a particular business transaction. Preconditions are specified in
the guard of a transition from the initial pseudo state to a requesting
business activity. Post-conditions are specified in the guard of a
transition from a requesting business activity to state vertex that is the
state of the machine when the business activity is successfully
performed.

8.3.5 Object Flow

Business documents flow states specify the business document flow
between roles as they perform business activities. Each business
document has a source and target business activity.
An object flow has a type that is a document envelope. An envelope
contains one or more structured and unstructured business documents.
A business document is signed if non-repudiation of origin and content
is required. A detached signature is used to provide non-repudiation of
origin and content of a business document as it pertains to the entire
document. The signature shall be part of the business document for
authorization as the content of the document is authorized.
Structured business documents contain information entities. Information
entities contain other information entities. Containment is modeled using
UML associations.

8.3.6 Business Transaction Modeling Patterns

The e-business Business Transaction Pattern metamodel provides a framework for
constructing e-business collaboration model specifications. This section describes the
modeling patterns that apply the metamodel to represent specific business

8-8

transactions.

8.3.6.1 Introduction

The business transaction patterns metamodel provides a language and grammar for
constructing business collaboration models. Modeling patterns are applications of the
metamodel to common business transaction representations. Representations capture
common structure and semantics applicable to specific business transactions. The
UML activity diagram notation is used to specify business transaction patterns.

Modeling patterns are reusable, generalized business process abstractions that can be
applied to many business areas. A metamodel provides the syntax and grammar for
expressing designs. Modeling patterns are subjective constructions that meet the
requirements of specific business transactions.

8.3.6.2 Business Transaction State Semantics

A business transaction specifies the contract formation process between two business
partners. A contract is used to legally bind parties to a clearly stated intention (promise,
obligation) and responsibilities of each party. A contract usually outlines what each
party can do in the event the intended actions are not carried out (promised services
not rendered, services rendered but payment not issued). Prudent parties execute
(sign) contracts prior to carrying out the intended actions, to limit their liability and to
protect their interests.

There are many types of business contract formation processes. For example, an
“OFFER-AND-ACCEPTANCE” contract is formed when a product order is “accepted”
by a vendor. An “accepted” (signed, mutually agreed upon) purchase order forms a
contract between buyer and seller to provide a quantity of product at an agreed-upon
price. After the contract is formed, the seller provides the product and the buyer pays
for the product. In the event something goes wrong, the buyer and seller both have
recourse as described in the contract.

Another example of contract formation occurs when a claim has been accepted for
payment; this is a “contract” to perform the issuance of monetary payment (or another
form of credit) some time after the “acceptance” (contract formation) of the claim.
All business transactions are treated as contract forming processes in that there is
always an obligation (perhaps not residual) between each of the parties participating in
the transaction.

The UML activity diagram notation is used to graphically specify these business
transactions as design patterns. The pattern for specifying and interpreting these
diagrams and the textual notation used to specify element names as well as conditional
expressions is provided in this section.

Figure 29 illustrates a business transaction specification that does not include a
responding business document and Figure 30 illustrates a business transaction
specification that includes a responding business document.

8-9

Error! Reference source not found. illustrates a business transaction specification
that does not include a responding business document and Figure 8-2 illustrates a
business transaction specification that includes a responding business document.

Document
Request

:RequestingRole :RespondingRole

<<Stereotype>>
Responding Business Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<Stereotype>>
Requesting Business Activity

Figure 8-1 Business Transaction without Responding Business Document

8-10

Document
Request

Document
Response

:RequestingRole :RespondingRole

<<Stereotype>>
Responding Business Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

CONTRACT
FAILED

[CONTRACTFAIL]

<<Stereotype>>
Requesting Business Activity

Figure 8-2 Business Transaction with Responding Business Document

It is recommended that all business transaction specifications use the layout illustrated
in these figures. This will provide a consistent method of communicating business
transactions.

The initial (START) state and the final (END, CONTROLFAILED, CONTRACTFAILED)
state represent the state of a business transaction and not the state of any role that
participates in the transaction. It is "by convention" that the initial and final states are
placed into the requestor’s swim lane. This has no semantic meaning with respect to
any participating role. These states could be anywhere in the activity graph as they still
pertain to the entire transaction and not to any particular role. The start state and final
state conditions should therefore specify conditions that shall hold before the business
transaction can transition into the "default" state (a UML definition).

START State Semantics
The condition that shall hold before transitioning into the initiating transaction activity
should test the following [note that a Trading Partner Agreement (TPA)contains the
transaction specifications agreed to by participating partners]:

1. The ability of each employee/organization to fulfill their obligations with respect
to a TPA e.g.

a. Are the roles approved trading partners i.e. does a TPA exist that
governs the terms and conditions of the transaction?

b. Do each of the participating roles meet the criterion required for
performing the activity e.g. is the employee/organization performing the
role authorized to perform the role if authorization is required?

c. Is a business document non-repudiated if required in a TPA?
d. Are all data entities tamper-proof, confidential and authenticated as

8-11

required in a TPA?
2. If a business record exists and it is also syntactically and structurally formatted

with respect to the agreed message guideline in a TPA.
Start State Notation
Note that the START conditions are actually guard conditions on the transition from the
initial state to the initiating activity in the activity graph. There is no pseudo state
"condition" in the UML metamodel. These conditions are not, however, specified as
guards in the transaction diagram to improve readability.
It is preferred that these conditions are captured using the following syntax. This
improves consistency and will facilitate the translation of these conditions to OCL at a
later stage.
States conditions are named in the form <Noun><Property>(<Verb>or<Code>)

• The <Noun> can be a Business Data Entity and the property is named "Status"
in the form BDE Status <Code >. Purchase Order Status Open

• The <Noun> can be a Business Document with no named property in the form
<Noun> <verb>. Purchase Order Exists

• The <Property> can be the name of a business process support system with no
<Noun> in the form <Property><Verb>. Buyer Authorized.

Use the following notation to specify the START conditions:
• TPA Exists
• Requesting Partner Approved
• Responding Partner Approved
• <Business Document> Status <Code> etc. The values for this can be found in

the business dictionary (just search for *StatusCode in the Entity Instances
table). Use only valid status from the dictionary or add another valid status to
the dictionary e.g. Purchase Order Status Revoked

• <Requesting Role> Authorized e.g. Buyer Authorized
• <Business Document> Exists e.g. Purchase Order Exists
• <Business Document> Non-Repudiated
• <Business Document> Valid
• <Business Document> <Property> Tamper-Proof
• <Business Document> <Property> Confidential
• <Business Document> <Property> Authenticated

END, CONTROLFAILED and CONTRACTFAILED State Semantics
The state of the business transaction transitions into the END state if both parties in a
business transaction meet the conditions agreed to in their TPA. There are two final
states specified for business transactions:

1. Contract Failure. The state machine shall transition into the
CONTRACTFAILED state if the intended business contract is not formed but
none of the control conditions are violated. For example, a responding role may
return a negative business acceptance document that contains a status BDE
whose value is “Reject”. In these cases a test on the BDE status for reject shall
transition the state machine into the CONTRACTFAILED state. The contract
failure end state shall only be used for business transactions that permit
negative acknowledgements. In these instances the business transaction
activity graph is shown in Figure 8-2. If there is no contract failure condition then
the transaction activity graph is shown in Figure 8-3.

8-12

Document
Request

Document
Response

:RequestingRole :RespondingRole

<<Stereotype>>
Responding Business Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<Stereotype>>
Requesting Business Activity

Figure 8-3 Business Transaction with no Contract Failure State

2. Control Failure. The activity shall transition into the CONTROLFAILED state if
any business collaboration control parameter is violated. For example, timeouts,
processing exceptions, non-repudiation and authorization exceptions. In these
cases both the transaction fails and the contract is not formed.

The conditions that shall hold before transitioning into the SUCCESS state should test
the following [note that a TPA contains the transaction specifications agreed to by
participating partners]:

1. Each employee/organization has fulfilled their obligations with respect to
a trading partner agreement (TPA) e.g.
a. Have each of the participating roles met the criterion required for

performing the activity e.g. were the employee/organization performing
the roles authorized to perform the role if authorization is required?

b. Is a business document non-repudiated if required in a TPA?
c. Are all data entities in the responding document tamper-proof,

confidential and authenticated as required in a TPA?
d. Were all documents and business signals received by both parties as

agreed to in the TPA.
2. If a business record exists and it is also syntactically and structurally

formatted with respect to the agreed message guideline specified in a TPA.
3. The retry count has not exceeded the maximum specified.
4. The state machine transitions to the CONTRACTFAILED state if the

conditions to transition to the END state are not met and/or a condition on a
negative response is satisfied. It is redundant to re-specify the negation of all
of the SUCCESS conditions in the FAILED state conditions. Therefore, the
following are the only conditions necessary for the CONTRACTFAILED
conditions.

8-13

• SUCCESS and (<Business Data Element> Status <Code > and/or
….)

5. The state machine transitions to the CONTROLFAILED state if the conditions
to transition to the END state and CONTRACTFAILED states are not met. It
is redundant to re-specify the negation of all of the SUCCESS and
CONTRACTFAILED conditions in the CONTROLFAILED state conditions.
Therefore, the following are the only conditions necessary for the
CONTROLFAILED conditions.

• Not SUCCESS or Not CONTRACTFAIL
EDITORS NOTE: 4 AND 5 REQUIRE FURTHER EXPLANATION

END State Notation

Note that the END conditions are actually guard conditions on the transition from the
end status in the activity graph. There is no pseudo state "condition" in the UML
metamodel. These conditions are not, however, enumerated as guards in the
transaction diagram to improve readability. It is preferred that these conditions are
captured using the following syntax. This improves consistency and will facilitate the
translation of these conditions to OCL at a later stage.
States conditions are named in the form <Noun><Property>(<Verb>|<Code>)

• The <Noun> can be a Business Data Entity and the property is named "Status"
in the form BDE Status <Code>. Purchase Order Status Open

• The <Noun> can be a Business Document with no named property in the form
<Noun> <verb>. Purchase Order Acceptance Exists

• The <Property> can be the name of a business process support system with no
<Noun> in the form <Property><Verb>. Seller Authorized, Receipt Non-
Repudiated.

Use the following notation to specify the END conditions:
• <Business Document> Status <Code> etc. The values for this can be found in

the business dictionary (just search for *StatusCode in the Entity Instances
table). Make sure you only use valid status from the dictionary or add another
valid status to the dictionary e.g. Purchase Order Acceptance Status Approved

• <Responding Role> Authorized e.g. Seller Authorized
• <Business Document> Exists e.g. Purchase Order Acceptance Exists.
• <Business Signal> Exists e.g. Verification of Receipt Exists
• <Business Document> Non-Repudiated
• Verification of Receipt Non-Repudiated
• <Business Document> Valid
• <Business Signal> Valid
• <Business Document> <Property> Tamper-Proof
• <Business Document> <Property> Confidential
• <Business Document> <Property> Authenticated

8.3.6.3 Business Transaction Pattern Rationale

This section provides the design rationale for the time-out specification in each
business transaction pattern. This pattern rational is presented within a document-
processing framework that comprises the following steps.

1. Grammar validation. The task of verifying that the grammar of a message is
valid (usually only the header of the message at this step).

8-14

2. Sequence validation. The task of verifying that the collaboration control
information is valid with respect to the business transaction specification.

3. Schema validation. The task of verifying that the message schema is valid with
respect to a message guideline agreed to by both partners. It is recommended
that message receipt be acknowledged after this validation step to ensure that
documents are “readable” as well as “accessible”.

4. Content validation. The task of verifying that the content of a message is valid
with respect to any business rules that govern the formation of a contract. It is
recommended that business acceptance be acknowledged after this validation
step.

5. Activity processing. The task of processing the request in the initiating business
document.

Figure 8-4 illustrates the processing of an initiating message when the contract-closing
(contract acceptance document) message is an acknowledgement of receipt. The
acknowledgement of receipt is a business signal i.e. it does not map onto a business
document.

Schema
Validation

Content
Validation

Sequence
Validation

Grammar
Validation

Initiating
Message Activity

Processing

Closing Message is
Acknowledgement

of Receipt Business
Signal

Figure 8-4 Acknowledgement of Receipt Closing Message

The following table shows example timeout parameters for this business transaction.
The Information Distribution and Notification business activity specification (see
Modeling Metamodel) use this design pattern.

Business Activity Performance Controls

Role Name
Activity
Name Ti

m
e

to
A

ck
no

w
le

dg
e

R
ec

ei
pt

Ti
m

e
to

A
ck

no
w

le
dg

e
A

cc
ep

ta
nc

e

Ti
m

e
to

Pe
rf

or
m

Role Activity 24hr N/A 24hr

Figure 8-5 illustrates the processing of an initiating message when the closing
message is an acknowledgement of acceptance. The acceptance message can be
either substantive or non-substantive. A substantive business acceptance message
includes business data from the initiating message e.g. product, price and quantity in a
substantive purchase order acceptance document. A substantive business acceptance

8-15

message contains a business document. A positive non-substantive business
acceptance message contains the initiating business document identification data. A
negative non-substantive business acceptance message contains the initiating
business document identification data, the reason for rejection and syntactic error
messages indicating the business data elements in which the error was found. A
positive non-substantive acceptance message is a business signal i.e. it does not map
onto a business document. Note the following:

1. If a substantive business acceptance is required then a responding business
document is specified in a business transaction.

2. If a non-substantive business acceptance is required then a responding
business document is not specified in a business transaction.

Schema
Validation

Content
Validation

Sequence
Validation

Grammar
Validation

Initiating
Business
Document Activity

Processing

Acknowledgement
of Receipt

Acknowledgement
of Acceptance

Figure 8-5 Acknowledgement of Business Acceptance Closing Message

The following table shows example timeout parameters for this business agreement.
The Business Transaction Activities use this design pattern when a substantive
business acknowledgement of acceptance is required.

Business Activity Performance Controls

Role Name
Activity
Name Ti

m
e

to
A

ck
no

w
le

dg
e

R
ec

ei
pt

Ti
m

e
to

A
ck

no
w

le
dg

e
A

cc
ep

ta
nc

e

Ti
m

e
to

Pe
rf

or
m

Role Activity 2hr 6hr 6hr

Figure 8-6 illustrates the processing of an initiating message when the closing
message is a responding business document. The Query/Response business activity
specification uses this design pattern.

8-16

Schema
Validation

Content
Validation

Sequence
Validation

Grammar
Validation

Initiating
Message Activity

Processing

Closing Message is
Responding

Business Document

Figure 8-6 Responding Business Document is Closing Message

The following table shows example timeout parameters for this business transaction.

Business Activity Performance Controls

Role Name
Activity
Name Ti

m
e

to
A

ck
no

w
le

dg
e

R
ec

ei
pt

Ti
m

e
to

A
ck

no
w

le
dg

e
A

cc
ep

ta
nc

e

Ti
m

e
to

Pe
rf

or
m

Role Activity N/A N/A 24hr

It is possible to specify acknowledgements and a responding business document as
part of the business agreement. Figure 8-7 illustrates the processing of an initiating
message when there is a requirement for an acknowledgement of receipt, a non-
substantive acknowledgment of acceptance and a responding document. Note that the
acceptance message cannot be specified as substantive i.e. a business document. It
can only be a non-substantive i.e. a business signal. If the acceptance shall be
substantive then two business transactions are required.

Schema
Validation

Content
Validation

Sequence
Validation

Grammar
Validation

Initiating
Business
Document

Activity
Processing

Responding
Business Document

Acknowledgement
of Receipt

Acknowledgement
of Acceptance

Figure 8-7 Receipt, Business Acceptance and Business Document
Response

The following table shows example timeout parameters for this business transaction.
The Business Transaction business activity specification that mandates the return of a
non-substantive business acceptance acknowledgement uses this design pattern.

8-17

Business Activity Performance Controls

Role Name
Activity
Name Ti

m
e

to
A

ck
no

w
le

dg
e

R
ec

ei
pt

Ti
m

e
to

A
ck

no
w

le
dg

e
A

cc
ep

ta
nc

e

Ti
m

e
to

Pe
rf

or
m

Role Activity 2hr 6hr 24hr

Interpreting how the contact is closed using a substantive or non-substantive
acknowledgement of acceptance is a based on three cues.

1. There is a value for “Time to Acknowledge Acceptance”.
2. The value for “Time to Perform” is either equal or not equal to the “Time to

Acknowledge Acceptance”.
3. There either is or is not a business document response.

Case 1:
 If

1. There is a value for “Time to Acknowledge Acceptance”.
2. The value for “Time to Perform” equals the “Time to Acknowledge

Acceptance”.
3. There is no business document response.

Then the acknowledgement of acceptance is non-substantive.
Case 2:
 If

1. There is a value for “Time to Acknowledge Acceptance”.
2. The value for “Time to Perform” equals the “Time to Acknowledge

Acceptance”.
3. There is a business document response with the verb acceptance

appended to a noun e.g. Purchase Order Acceptance.
Then the acknowledgement of acceptance is substantive.
Case 3:
 If

1. There is a value for “Time to Acknowledge Acceptance”.
2. The value for “Time to Perform” does not equal the “Time to Acknowledge

Acceptance”.
3. There is a business document response.

Then the acknowledgement of acceptance is non-substantive.

8.3.6.4 Business Transaction Pattern [Contract formation, e.g., place order]

The business transaction design pattern is illustrated in Figure 8-8. This design pattern
is best used to model the “offer and acceptance” business transaction process that
results in a residual obligation between both parties to fulfill the terms of the contract.
The following principals and definitions of offer and acceptance are taken from the
following URL:
http://www.anu.edu.au/law/pub/edinst/anu/contract/lectures/moles/semest1/MContractF
ormationOfferAnd.html#MContrac-Whatisanoffer.

Offer and acceptance are a means of analyzing the process of

8-18

negotiation to decide whether and when a contract has been
made and what therefore constitute its terms.
There is no satisfactory definition of an offer beyond identifying it
by reference to the fact that it can be converted into a contract by
an act of acceptance. Whether it can be accepted depends upon
the objective intention of the party making the statement which is
alleged to be an offer.

Making an offer exposes one to the imposition of legal liability by
another. In deciding whether statements amount to an offer, the
courts are said to use an objective test. Therefore under the
objective test an apparent intention to be bound will suffice if 2
conditions are satisfied:
• conduct of the alleged offeror shall be such as to induce a

"reasonable person" to believe that he/she is making the
alleged offer.

• the alleged offeree shall actually hold that belief - ie believe
that the offeror is making a genuine offer, as opposed, for
example, to playing a game.

The pattern specifies an originating business activity sending a business document to a
responding business activity that may return a business signal or business document
as the last responding message. The pattern mandates the acknowledgement of the
requesting business document when it passes a “Business Acceptance” test, i.e.
passes the content validation step as illustrated in Figure 36. This acknowledgement
can be substantive i.e. contains the terms of acceptance of a contract or it may be non-
substantive i.e. a general auditable business signal. The intent of this business
transaction pattern is to model the formation of an offer and acceptance business
contract1. If the requesting role transitions from their business activity into the control
failure state then the role shall initiate a notification of failure (see notification design
pattern) business transaction to revoke their original offer.
Note that the “CONTRACTFAILED” final state can be omitted from the business
transaction specification if there are no negative business acceptance documents
specified.

1 Refer to the following documents to understand on-line business contract formation.

• PART 2 UNIFORM RULES OF CONDUCT FOR INTERCHANGE OF TRADE DATA BY
TELETRANSMISSION (UNCID), CHAPTER 2 - Text of the Uniform Rules of Conduct,
http://www.unece.org/trade/untdid/texts/d220_d.htm

• UN/ECE RECOMMENDATION No.26, THE COMMERCIAL USE OF INTERCHANGE
AGREEMENTS FOR ELECTRONIC DATA INTERCHANGE,
http://www.unece.org/trade/untdid/texts/d240_d.htm

• The Commercial use of Electronic Data Interchange, Section of Business Law American
Bar Association, A report and model trading partner agreement,
http://www.abanet.org/buslaw/catalog/5070258.html

8-19

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

CONTRACT
FAILED

[CONTRACTFAIL]

<<BusinessTransactionActivity>>
Activity

Figure 8-8 Business Transaction Activity Design Pattern

8.3.6.5 Query/Response Pattern [Static information, e.g., obtain catalog]

Figure 8-9 illustrates the query/response design pattern. The query/response design
pattern specifies one business document as output and one business document as
input. These documents adhere to the query/response business document design
pattern specified in the previous section. Query/Response does not permit the return of
auditable business signals i.e. receipt acknowledgement or business acceptance
acknowledgement.
The responding activity is most likely to be serviced by an organizational role i.e. not by
an employee role. There is no non-repudiation requirement for these activities.

8-20

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<QueryResponseActivity>>
Activity

Figure 8-9 Query/Response Activity Design Pattern

The query/response design pattern specifies a query for information that a responding
partner already has e.g. against a fixed data set that resides in a database. The
response comprises zero or more results each of which meet the constraining criterion
in the query. For example, a query for the products under $500 will yield any number of
product results in the same response all of which have a price under $500. This pattern
should be used when the response comprises a collection of results each of which
meet the constraining criterion specified in the query. The Request/Response design
pattern should be used instead.

8.3.6.6 Request/Response Pattern [Dynamic information, e.g., obtain Buyer ID,
obtain quote]

Figure 8-10 illustrates the request/response design pattern. Note that there is usually
no residual obligation between both parties to fulfil the terms of a contract as in the
Business Transaction Activity pattern. For example, a request for price and availability
does not result in the responding party allocating product for future purchase and it
does not result in the requesting party being obligated to purchase the products. This
pattern specifies the exchange of a requesting and responding business document.
Acknowledgement of business acceptance is not permitted – use the “Business
Transaction Activity” stereotype if this is required.
The responding activity is most likely serviced by organizational or employee roles.
Non-repudiation is an optional requirement for these activities.

8-21

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<RequestResponseActivity>>
Activity

Figure 8-10 Request/Response Activity Design Pattern

The request/response activity pattern shall be used for business contracts when an
initiating partner requests information that a responding partner already has and when
the request for business information requires a complex interdependent set of results.
For example, a price and availability request may constrain the response such that the
sum of all products returned in each of the results (one response may comprise zero or
more results) shall be less than 100. This response requires some business processing
on a query before a response is returned to the requestor. This flow pattern is used in
conjunction with the Request/Response business document design pattern that
includes syntax for expressing Business Constraints that apply to the collection of
results in the response. If there is no “aggregate” or “interdependent” constraints that
shall be applied to a set of results then the query/response pattern shall be used.

8.3.6.7 Request/Confirm Pattern [Status information, e.g., Obtain order status]

Figure 8-11 illustrates the request/confirm design pattern. Note that there is usually no
residual obligation between both parties to fulfill the terms of a contract as in the
Business Transaction Activity pattern. For example, a request for authorization to sell
certain products expects a confirmation response to the request that confirms if the
requestor is authorized or not authorized to sell the products. This pattern specifies the
exchange of a requesting and responding business document. If acknowledgement of
receipt is expected it is the initiator’s obligation to follow up on the request until an
acknowledgement of receipt is received. Acknowledgement of business acceptance is
not permitted – use the “Business Transaction Activity” stereotype if this is required.
The responding activity is most likely serviced by organizational or employee roles.
Non-repudiation is an optional requirement for these activities.

8-22

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<RequestConfirmActivity>>
Activity

Figure 8-11 Request/Confirm Activity Design Pattern

The request/confirm activity pattern shall be used for business contracts where an
initiating partner requests confirmation about their status with respect to previously
established contracts or with respect to a responding partner’s business rules.

8.3.6.8 Information Distribution Pattern

Figure 8-12 illustrates the information distribution design pattern. This pattern specifies
the exchange of a requesting business document and the return of an
acknowledgement of receipt business signal. This pattern is used to model an informal
information exchange business transaction that therefore has no non-repudiation
requirements.

8-23

Document
Request

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<InformationDistributionActivity>>
Activity

Figure 8-12 Information Distribution Design Pattern

8.3.6.9 Notification Pattern

Figure 8-13 illustrates the notification design pattern. This pattern specifies the
exchange of a notifying business document and the return of an acknowledgement of
receipt business signal. This pattern is used to model a formal information exchange
business transaction that therefore has non-repudiation requirements.

8-24

Document
Notice

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<NotificationActivity>>
Activity

Figure 8-13 Notification Design Pattern

8.3.6.9.1 Notification of Failure Semantics

The intent of the notification of failure business transaction is to revoke an initial
business contract offer if the contract formation process fails. The requesting partner
can only initiate this business transaction. A responding partner is required to return an
exception document or a negative acknowledgement document when an error is
generated.
Notification of failure shall only be initiated when a terminating transaction does not
leave both parties with a mutual agreement as to the state of a business transaction.
This condition exists when:

1. The initiating partner’s business activity times-out when waiting for a specified
response to its requesting business document.

2. The responding business document is erroneous, not authorized or not digitally
signed as agreed to in a Trading Partner Agreement.

The UN/EDIFACT model trading partner agreement
(http://www.unece.org/trade/untdid/texts/d240_d.htm) recommends the following
procedure be agreed to by both partners in their Trading Partner Agreement so as to
leave each partner with a mutual understanding of when a contract is not formed:

“3.2.3. In the event that the originating party has not received, for a properly
transmitted Message, a required acknowledgement and no further instructions
have been provided, the originating party may declare the Message null and
void by so notifying the receiving party.”

The contract requestor initiates this business transaction when the originating partner
times-out when waiting for a specified response. Where notifications are sent is
defined in a trading partner agreement and may be different for each business

http://www.unece.org/trade/untdid/texts/d240_d.htm

8-25

transaction.
It is recommended that the Notification of Failure business transaction be executed
over an alternate communication channel to prevent the inability to report failures
potentially caused by communication failures. It is recommended that the
organizational entity responding to the notification of failure is different from the
organization that failed to respond to the original business document request (“offer”).
In an e-business network environment, this “alternate communications channel” should
at least be interpreted to mean communicating with an application server that is
different from the application server that has not serviced the original business
document request. Trading partners should, however, agree on this “alternate
communications channel.”
This business transaction is not exercised when a responding business partner
encounters a business process or control exception when responding to a business
document request.

8-26

8.4 Design Patterns

Networked business services and business agents are configured to execute business
transactions and business collaboration agreements. The UML sequence diagram
notation is used to specify Business Service interactions. The following Business
Service interactions are possible.
1. Service-Service.
2. Agent-Service-Service.
3. Service-Service-Agent.
4. Service-Agent-Service.
5. Agent-Service-Agent

8.4.1 Service-Service

Figure 8-14 illustrates the Service-Service business service interaction pattern used in
the business transaction patterns of Section 8.3.

ServiceComponentA ServiceComponentB

OriginatingService
RespondingService

Service-Service
Pattern

Figure 8-14 Service-Service pattern

8-27

Figure 8-15 shows the class diagram for the Service-Service pattern, which is the base
pattern.

ServiceComponentA
/OriginatingService

ServiceComponentB
/RespondingService

<<interface>>
OriginatingService

signal(a:BusinessSignalMessage)
response(a:BusinessActionMessage)

<<interface>>
RespondingService

signal(a:BusinessSignalMessage)
request(a:BusinessActionMessage)

Figure 8-15 Service-Service pattern class diagram

There are five variations within the Service-Service pattern:
1. Interaction Pattern A applies to the Business Transaction Pattern where time to

perform equals time to acknowledge acceptance and there is no responding
business document.

2. Interaction Pattern B also applies to the Business Transaction Pattern where
time to perform equals time to acknowledge acceptance and a responding
business document.

3. Interaction Pattern C also applies to the Business Transaction Pattern where
time to perform is greater than time to acknowledge acceptance.

4. Interaction Pattern D applies to the Query/Response, Request/Response, and
Request/Confirm Patterns.

5. Interaction Pattern E applies to the Information Distribution and Notification
Patterns.

8-28

Business Transaction Activity

Figure 8-16, Figure 8-17, and Figure 8-18 illustrate Interaction Patterns A, B, and C
respectively.

 :
OriginatingService

 :
RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

Figure 8-16 Service-Service Interaction Pattern A

8-29

 :
OriginatingService

 :
RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2. response(BusinessActionMessage)

2.1. signal(ReceiptAcknowledgement)

Figure 8-17 Service-Service Interaction Pattern B

8-30

 :
OriginatingService

 :
RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2. response(BusinessActionMessage)

1.2. signal(AcceptanceAcknowledgement)

2.1. s ignal(ReceiptAcknowledgement)

Figure 8-18 Service-Service Interaction Pattern C

8-31

Query/Response, Request/Response, and Request/Confirm Activities

Figure 8-19 illustrates Interaction Pattern D.

 :
OriginatingService

 :
RespondingService

1. request(BusinessActionMessage)

2. response(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2.1. signal(ReceiptAcknowledgement)

Figure 8-19 Service-Service Interaction Pattern D

8-32

Information Distribution and Notification Activities

Figure 8-20 illustrates Interaction Pattern E.

 :
OriginatingService

 :
RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

Figure 8-20 Service-Service Interaction Pattern E

8-33

8.4.2 Agent-Service-Service

Figure 8-21 illustrates the Agent-Service-Service business service interaction pattern
used in the business transaction patterns of Section 8.3.

ServiceComponentA ServiceComponentB

RespondingService

AgentComponentA

Agent-Service-Service
Pattern

OriginatingService

OriginatingAgent

Figure 8-21 Agent-Service-Service Pattern

8-34

Figure 8-22 shows the class diagram for the Agent-Service-Service pattern, and Figure
8-23 shows the class diagram for the Agent-Service-Service unfolded from the base
pattern.

/OriginatingAgent /OriginatingService

<<interface>>
Agent

return(a:BusinessActionMessage)

<<interface>>
OriginatingServiceAgent

callTxn()

/ResponsingService

OriginatingService

RespondingService

Service-Service
Pattern

Figure 8-22 Agent-Service-Service pattern class diagram

8-35

AgentComponentA
/OriginatingAgent

ServiceComponentA
/OriginatingService

ServiceComponentB
/RespondingService

<<interface>>
OriginatingService

signal(a:BusinessSignalMessage)
response(a:BusinessActionMessage)

<<interface>>
RespondingService

signal(a:BusinessSignalMessage)
request(a:BusinessActionMessage)

<<interface>>
Agent

return(a:BusinessActionMessage)

<<interface>>
OriginatingServiceAgent

callTxn()

Figure 8-23 Agent-Service-Service pattern class diagram unfolded

There are five variations within the Agent-Service-Service pattern:
1. Interaction Pattern A applies to the Business Transaction Pattern where time to

perform equals time to acknowledge acceptance and there is no responding
business document.

2. Interaction Pattern B also applies to the Business Transaction Pattern where
time to perform equals time to acknowledge acceptance and a responding
business document.

3. Interaction Pattern C also applies to the Business Transaction Pattern where
time to perform is greater than time to acknowledge acceptance.

4. Interaction Pattern D applies to the Query/Response, Request/Response, and
Request/Confirm Patterns.

5. Interaction Pattern E applies to the Information Distribution and Notification
Patterns.

8-36

Business Transaction Activity

Figure 8-24, Figure 8-25, and Figure 8-26 illustrate Interaction Patterns A, B, and C
respectively.

 :
OriginatingService

 :
RespondingService

 :
OriginatingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.2. return(BusinessSignal)

Figure 8-24 Agent-Service-Service Interaction Pattern A

8-37

 :
OriginatingService

 :
RespondingService

 :
OriginatingAgent

1. callTxn()
1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. response(BusinessActionMessage)

1.2. return(BusinessActionMessage)

1.1.2.1. signal(ReceiptAcknowledgement)

Figure 8-25 Agent-Service-Service Interaction Pattern B

8-38

 :
OriginatingService

 :
RespondingService

 :
Originat ingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.1.3. response(BusinessActionMessage)

1.2. return(BusinessActionMessage)

1.1.3.1. signal(ReceiptAcknowledgement)

Figure 8-26 Agent-Service-Service Interaction Pattern C

8-39

Query/Response, Request/Response, and Request/Confirm Activities

Figure 8-27 illustrates Interaction Pattern D.

 :
OriginatingService

 :
RespondingService

 :
OriginatingAgent

1. callTxn()

1.1. request(BusinessAct ionMessage)

1.1.2. response(BusinessActionMessage)

1.2. return(Bus inessActionMessage)

1.1.2.1. signal(ReceiptAcknowledgement)

1.1.1. signal(ReceiptAcknowledgement)

Figure 8-27 Agent-Service-Service Interaction Pattern D

8-40

Information Distribution and Notification Activities

Figure 8-28 illustrates Interaction Pattern E.

 :
OriginatingService

 :
RespondingService

 :
OriginatingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessActionMessage)

Figure 8-28 Agent-Service-Service Interaction Pattern E

8-41

8.4.3 Service-Service-Agent

Figure 8-29 illustrates the Service-Service-Agent business service interaction pattern
used in the business transaction patterns of Section 8.3.

ServiceComponentA ServiceComponentB

RespondingService

AgentComponentB

Service-Service-Agent
Pattern

OriginatingService

RespondingAgent

Figure 8-29 Service-Service-Agent pattern

8-42

Figure 8-30 shows the class diagram for the Service-Service-Agent pattern, and Figure
8-31 shows the class diagram for the Service-Service-Agent unfolded from the base
pattern.

/RespondingAgent/OriginatingService

<<interface>>
Agent

return(a:BusinessActionMessage)

<<interface>>
RespondingServiceAgent

queryTxn()

/RespondingService

OriginatingService
RespondingService

Service-Service
Pattern

Figure 8-30 Service-Service-Agent pattern class diagram

8-43

AgentComponentB
/OriginatingAgent

ServiceComponentA
/OriginatingService

ServiceComponentB
/RespondingService

<<interface>>
OriginatingService

signal(a:BusinessSignalMessage)
response(a:BusinessActionMessage)

<<interface>>
RespondingService

signal(a:BusinessSignalMessage)
request(a:BusinessActionMessage)

<<interface>>
Agent

return(a:BusinessActionMessage)

<<interface>>
OriginatingServiceAgent

queryTxn()

Figure 8-31 Service-Service-Agent pattern class diagram unfolded

There are five variations within the Service-Service-Agent pattern:
1. Interaction Pattern A applies to the Business Transaction Pattern where time to

perform equals time to acknowledge acceptance and there is no responding
business document.

2. Interaction Pattern B also applies to the Business Transaction Pattern where
time to perform equals time to acknowledge acceptance and a responding
business document.

3. Interaction Pattern C also applies to the Business Transaction Pattern where
time to perform is greater than time to acknowledge acceptance.

4. Interaction Pattern D applies to the Query/Response, Request/Response, and
Request/Confirm Patterns.

5. Interaction Pattern E applies to the Information Distribution and Notification
Patterns.

8-44

Business Transaction Activity

Figure 8-32, Figure 8-33, and Figure 8-34 illustrate Interaction Patterns A, B, and C
respectively.

 :
OriginatingService

 :
RespondingService

 :
RespondingAgent

1. request(BusinessAct ionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. signal(AcceptanceAcknowledgement)

Figure 8-32 Service-Service-Agent Interaction Pattern A

8-45

 :
OriginatingService

 :
RespondingService

 :
RespondingAgent

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. response(BusinessActionMessage)

1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 8-33 Service-Service-Agent Interaction Pattern B

8-46

:
OriginatingService

 :
RespondingService

 :
RespondingAgent

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

1.3. response(BusinessActionMessage)

1.3.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 8-34 Service-Service-Agent Interaction Pattern C

8-47

Query/Response, Request/Response, and Request/Confirm Activities

Figure 8-35 illustrates Interaction Pattern D.

 :
OriginatingService

 :
RespondingService

 :
RespondingAgent

1. request(BusinessActionMessage)

1.2. response(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 8-35 Service-Service-Agent Interaction Pattern D

8-48

Information Distribution and Notification Activities

Figure 8-36 illustrates Interaction Pattern E.

:
OriginatingService

 :
RespondingService

 :
RespondingAgent

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessAc tionMessage)

2.1.1. response(BusinessActionMessage)

Figure 8-36 Service-Service-Agent Interaction Pattern E

8-49

8.4.4 Service-Agent-Service

Figure 8-37 illustrates the Service-Agent-Service business service interaction pattern
used in the business transaction patterns of Section 8.3.

ServiceComponentA ServiceComponentB

RespondingService

AgentComponentB

Service-Agent-Service
Pattern

OriginatingService

RespondingAgent

AgentComponentA

OriginatingAgent

Figure 8-37 Service-Agent-Service pattern

8-50

Figure 8-38 shows the class diagram for the Service-Agent-Service pattern, and Figure
8-39 shows the class diagram for the Service-Agent-Service unfolded from the base
pattern.

/RespondingAgent

/OriginatingService /ResponsingService

/OriginatingAgent
<<interface>>

RespondingServiceService

transfer(a:BusinessActionMessage)

<<interface>>
RespondingServiceAgent

request(a:BusinessActionMessage)

OriginatingService RespondingService

Service-Service
Pattern

<<interface>>
Agent

return(a:BusinessActionMessage)<<interface>>
OriginatingServiceAgent

callTxn()
queryTxn()

Figure 8-38 Service-Agent-Service pattern class diagram

8-51

AgentComponentB
/RespondingAgent

ServiceComponentA
/OriginatingService

ServiceComponentB
/ResponsingService

AgentComponentA
/OriginatingAgent

<<interface>>
RespondingServiceService

transfer(a:BusinessActionMessage)

<<interface>>
Agent

return(a:BusinessActionMessage)<<interface>>
OriginatingServiceAgent

callTxn()
queryTxn()

<<interface>>
OriginatingService

signal(a:BusinessSignalMessage)
response(a:BusinessActionMessage)

<<interface>>
RespondingService

signal(a:BusinessSignalMessage)

<<interface>>
RespondingServiceAgent

request(a:BusinessActionMessage)

Figure 8-39 Service-Agent-Service pattern class diagram unfolded

There are six variations within the Service-Agent-Service pattern:
1. Interaction Pattern A applies to the Business Transaction Pattern where time to

perform equals time to acknowledge acceptance and there is no responding
business document.

2. Interaction Pattern B also applies to the Business Transaction Pattern where
time to perform equals time to acknowledge acceptance and a responding
business document.

3. Interaction Pattern C also applies to the Business Transaction Pattern where
time to perform is greater than time to acknowledge acceptance.

4. Interaction Pattern D applies to the Query/Response and Request/Response
Patterns.

5. Interaction Pattern E applies to the Request/Confirm Pattern.
6. Interaction Pattern F applies to the Information Distribution and Notification

Patterns.

8-52

Business Transaction Activity

Figure 8-40, Figure 8-41, and Figure 8-42 illustrate Interaction Patterns A, B, and C
respectively.

 :
OriginatingService

 :
RespondingService

 :
RespondingAgent

 :
OriginatingAgent

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. signal(AcceptanceAcknowledgement)

2. queryTxn()

2.1. return(BusinessSignal)

Figure 8-40 Service-Agent-Service Interaction Pattern A

8-53

 :
OriginatingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessActionMessage)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 8-41 Service-Agent-Service Interaction Pattern B

8-54

 :
OriginatingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. return(BusinessActionMessage)
1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. signal(AcceptanceAcknowledgement)

1.1.1.1.3. response(BusinessActionMessage)

1.1.1.1.3.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 8-42 Service-Agent-Service Interaction Pattern C

8-55

Query/Response and Request/Response Activities

Figure 8-43 illustrates Interaction Pattern D.

 :
OriginatingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessActionMessage)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 8-43 Service-Agent-Service Interaction Pattern D

8-56

Request/Confirm Activity

Figure 8-44 illustrates Interaction Pattern E.

 :
OriginatingService

 :
Originat ingAgent

 :
RespondingAgent

 :
RespondingService

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessActionMessage)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 8-44 Service-Agent-Service interaction Pattern E

8-57

Information Distribution and Notification Activities

Figure 8-45 illustrates Interaction Pattern F.

 :
OriginatingService

 :
OriginatingAgent

 :
RespondingAgent

 :
Re spondi ngService

1. callTxn()

1.1. return(BusinessAction)

1.1.1. trans fer(Bus inessAction)
1.1.1.1. request(Bus in essActio n)

1.1.1.1.1. signal(ReceiptAcknowledgement)

2. callTxn()

2.1. return(BusinessSignal)

Figure 8-45 Service-Agent-Service Interaction Pattern F

8-58

8.4.5 Agent-Service-Agent

Figure 8-46 illustrates the Agent-Service-Agent business service interaction pattern
used in the business transaction patterns of Section 8.3.

ServiceComponentA ServiceComponentB

RespondingService

AgentComponentB

Agent-Service-Agent
Pattern

OriginatingService

RespondingAgent

AgentComponentA

OriginatingAgent

Figure 8-46 Agent-Service-Agent pattern

8-59

Figure 8-47 shows the class diagram for the Agent-Service-Agent pattern, and Figure
8-48 shows the class diagram for the Agent-Service-Agent unfolded from the base
pattern.

/RespondingService

/OriginatingAgent /ResponsingAgent

/OriginatingService

<<interface>>
Agent

return(a:BusinessActionMessage)<<interface>>
OriginatingServiceAgent

callTxn()

OriginatingService
RespondingService

Service-Service
Pattern

<<interface>>
RespondingServiceAgent

queryTxn()
signal(a:BusinessSignalMessage)

response(a:BusinessActionMessage)

<<interface>>
Agent

return(a:BusinessActionMessage)

Figure 8-47 Agent-Service-Agent class diagram

8-60

ServiceComponentB
/RespondingService

AgentComponentA
/OriginatingAgent

AgentComponentB
/ResponsingAgent

ServiceComponentA
/OriginatingService

<<interface>>
Agent

return(a:BusinessActionMessage)<<interface>>
OriginatingServiceAgent

callTxn()

<<interface>>
RespondingServiceAgent

queryTxn()
signal(a:BusinessSignalMessage)

response(a:BusinessActionMessage)

<<interface>>
Agent

return(a:BusinessActionMessage)

<<interface>>
OriginatingService

signal(a:BusinessSignalMessage)
response(a:BusinessActionMessage)

<<interface>>
RespondingService

signal(a:BusinessSignalMessage)
request(a:BusinessActionMessage)

Figure 8-48 Agent-Service-Agent class diagram unfolded

There are five variations within the Agent-Service-Agent pattern:
1. Interaction Pattern A applies to the Business Transaction Pattern where time to

perform equals time to acknowledge acceptance and there is no responding
business document.

2. Interaction Pattern B also applies to the Business Transaction Pattern where
time to perform equals time to acknowledge acceptance and a responding
business document.

3. Interaction Pattern C also applies to the Business Transaction Pattern where
time to perform is greater than time to acknowledge acceptance.

4. Interaction Pattern D applies to the Query/Response, Request/Response, and
Request/Confirm Patterns.

5. Interaction Pattern E applies to the Information Distribution and Notification
Patterns.

8-61

Business Transaction Activity

Figure 8-49, Figure 8-50, and Figure 8-51 illustrate Interaction Patterns A, B, and C
respectively.

 :
Originat ingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(AcceptanceAcknowledgement)

Figure 8-49 Agent-Service-Agent Interaction Pattern A

8-62

 :
Originat ingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

1.1.2. response(BusinessActionMessage)

1.1.2.1. s ignal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 8-50 Agent-Service-Agent Interaction Pattern B

8-63

 :
Originat ingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

1.1.2. signal(AcceptanceAcknowledgement)

1.1.3. response(BusinessActionMessage)

1.1.3.1. s ignal(ReceiptAcknowledgement)

Figure 8-51 Agent-Service-Agent Interaction Pattern C

8-64

Query/Response, Request/Response, and Request/Confirm Activities

Figure 8-52 illustrates Interaction Pattern D.

 :
Originat ingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. response(BusinessActionMessage)

1.1.2.1. s ignal(ReceiptAcknowledgement)

1.2. return(BusinessActionMessage)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BuBusinessActionMessage)

Figure 8-52 Agent-Service-Agent Interaction Pattern D

8-65

Information Distribution and Notification Activities

Figure 8-53 illustrates Interaction Pattern E.

 :
Originat ingService

 :
RespondingService

 :
OriginatingAgent

 :
RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

Figure 8-53 Agent-Service-Agent Interaction Pattern E

8-66

8.5 Business Information Structure Design Patterns

8.5.1 The Reference Design Pattern

Business entity containers can reference themselves and other entities by explicitly
modeling the reference association as an entity with association properties. As shown
in Figure 8-54, the reference association (SubComponent) should minimally contain
cardinality properties and a name that has a semantic definition specifying the
relationship between the related entities. This design pattern is useful for reusing
common sub-entity representations between multiple entity containers.

Component
<<DataEntity>>

Cardinality
<<FundamentalDataEntity>>

GlobalSemanticCode
<<FundamentalDataEntity>>

SubComponent
<<DataEntity>>

0..*0..*

11

1+atLeast 1

1+atMost 1

11

Figure 8-54 A Reference Relationship between Entities
Figure 8-54shows a Component entity containing zero or more SubComponent entities
that contain a reference to the same Component entity. Entities cannot be self-
referencing via a UML association directly i.e. the client and supplier of a UML
association cannot be the same. The UML association between the SubComponent
and Composite entities must be unidirectional.
Figure 8-55 illustrates the use of parenthesis in a message guideline document to
specify a reference from one entity to another. The supplier of the UML association is
enclosed in parenthesis.

8-67

Component
0..* SubComponent
1 (Component)
1 atLeast.Cardinality
1 atMost.Cardinality
1 GlobalSemanticCode

Figure 8-55 Illustration Showing Referenced Entity in Parenthesis
The XML document schema for this design pattern is shown inFigure 8-56. The
Component element either comprises SubComponent sub-elements or it comprises the
Association sub-element. The Component element also has an implied ID attribute that
is only necessary when it is the target of a reference attribute value.

<!ELEMENT Component ((SubComponent*) |
Association) >

<!ATTLIST Component
id ID #IMPLIED >

<!ELEMENT SubComponent (Component,
atMost,
atLeast,
GlobalSemanticCode) >

<!ELEMENT atMost (Cardinality) >
<!ELEMENT atLeast (Cardinality) >
<!ELEMENT GlobalSemanticCode (PCDATA) >
<!ELEMENT Cardinality (PCDATA) >
<!ELEMENT Association EMPTY >
<!ATTLIST Association

reference IDREF #REQUIRED>

Figure 8-56 Document Schema for Reference Design Pattern
The SubComponent element contains a Component sub-element as its content along
with the cardinality and semantic properties. The design does not permit a reference
attribute to be specified for the SubComponent element, as the “type” of the reference
is then lost. Specifying the Component as a sub-element of SubComponent and then
allowing Association to be a sub-element of Component is one method of retaining the
“type” of the association allowing better type-checking and a better method for
specifying the meaning of the SubComponent entity.

Figure 8-57 illustrates the use of the design pattern for creating XML document

8-68

instances that comply with the DTD fragment in Figure 8-56. You will notice that the
DTD permits other valid document instance construction, for example, the Component
element with id ‘PartA’ could contain the Association sub-element and the Component
sub-element of SubComponent could have an ‘id’ association. Both of these document
instance fragments would, however, have no meaning with respect to the entity model
in Figure 8-54 and the guideline in Figure 8-55.

This design specification holds when there is no requirement of a DTD to completely
validate a document instance as in the Business Collaboration Framework. Documents
must be valid with respect to a guideline that may contain business rules that constrain
the structure and content of a document in a specific business process context as
shown in Figure 8-57.

<Component id=‘partA’>
<!– properties go here -->

</Component>

<Component>
<SubComponent>

<Component>
<Association reference=‘partA’ />

</Component>
<atLeast>

<Cardinality>1</Cardinality>
</atLeast>
<atMost>

<Cardinality>5</Cardinality>
</atMost>
<GlobalSemanticCode>Requires</GlobalSemanticCode>

</SubComponent>
<Component>

Figure 8-57 Valid Reference Design Pattern Document Instance
Applications must ensure that the graph described by the ID-IDREF pairs do not
recurse infinitely. A reference attribute value should therefore not equal the id attribute
value of a containing Component element.

8-69

8.5.2 Query/Response Business Document Design Pattern

The query/response design pattern is useful for both querying business information and
for specifying the structure of the response to the query. There are a number of
approaches to designing query/response business documents.

1. The query and response are modeled as individual documents with fixed,
independent structure.

2. The query is modeled as a constraint on a fixed structure that is used to return
the response.

3. The query can be modeled as a constrained ‘template’ that must be ‘completed’
by a responding business partner.

The first approach is typical of Electronic Data Interchange (EDI) query/response
message specifications. The second approach is typical of Structured Query Language
(SQL) message specifications and the third approach is typical of symbolic
programming languages such as Lisp or Prolog that implement unification. The BCF
provides a design pattern for the third approach to query/response messages, as it is
the most flexible approach to query/response message design where the query and
response messages permit unlimited canonical data structures. The first two do not
require a design pattern, as they are no different from standard business document
specifications and are thus do not need a pattern.

Figure 8-58 illustrates a query/response data entity model. A product information query
comprises zero or more query constraints and one product description. A product
information response comprises zero (no results in query) or more product descriptions
that match the query. A query constraint is an Object Constraint Language (OCL)
expression that constraints the results returned in the query.

Specifying a template for the query results and placing constraints on the template by
either filling in some of the template content or by constraining the content of the
template using query constraints produces a product information query. Filling in the
template in accordance with the already specified content and the constraints produces
a product information response.

8-70

FreeFormText
<<Fu ndame ntalDataEntity>>

ProductInformationResponse
<<BusinessDocument>>

GlobalProductIdentifier
<<Funda mentalDataEntity>>

QueryConstraint
<<FundamentalDataEntity>>

ProductInform a tionQuery
<<Bus in essDocum ent>>

0..*

MonetaryAmount
<<FundamentalDataEntity>>

GlobalCurrencyCode
<<Fundam entalDataEntity>>

ProductDescription
<<DataEntity>>

0..1

+productName

0..*

0..1

1

FinancialAmount
<<DataE nt it y>>

11

11

0..1

0..*

1

0..*
0..1

0..10..1

Figure 8-58 Query/Response Data Entity Model
The XML document schema for this design pattern is shown in Figure 8-59. The
product description structure is used for both the query and response business
documents. The template for the query is created from the product description schema.

<!ELEMENT ProductInformationQuery (QueryConstraint*,
ProductDescription) >

<!ELEMENT ProductInformationResponse (ProductDescription *) >
<!ELEMENT QueryConstraint (PCDATA) >
<!ELEMENT ProductDescription (productName?,

GlobalProductIdentifier?,
FinancialAmount?) >

<!ELEMENT productName (FreeFormText) >
<!ELEMENT FreeFormText (PCDATA) >
<!ELEMENT GlobalProductIdentifier (PCDATA) >
<!ELEMENT FinancialAmount (MonetaryAmount,

GlobalCurrencyCode) >
<!ELEMENT MonetaryAmount (PCDATA) >
<!ELEMENT GlobalCurrencyCode (PCDATA) >

Figure 8-59 Query/Response Document Schema

8-71

An example product information query is shown in Figure 8-60. Information on a
product with the name ‘aName’ is requested if the price of the product is less than 500
monetary units of any currency. The template requests the global product identifier,
monetary amount and global currency code to be returned in the response.

<ProductInformationQuery>
<QueryConstraint>

ProductDescription.FinancialAmount.MonetaryAmount %lt; 500
</QueryConstraint>
<ProductDescription>

<ProductName>aName</ProductName>
<GlobalProductIdentifier></GlobalProductIdentifier>
<FinancialAmount>

<MonetaryAmount></MonetaryAmount>
<GlobalCurrencyCode></GlobalCurrencyCode>

</FinancialAmount>
</ProductDescription>

</ProductInformationQuery>

Figure 8-60 An Example Product Information Query
An example product information query response is shown in Figure 8-61. The result of
the query returns two product descriptions, their product identifiers and their cost.

<ProductInformationResponse>
<ProductDescription>

<ProductName>aName</ProductName>
<GlobalProductIdentifier>3456789093</GlobalProductIdentifier>
<FinancialAmount>

<MonetaryAmount>100</MonetaryAmount>
<GlobalCurrencyCode>USD</GlobalCurrencyCode>

</FinancialAmount>
</ProductDescription>

<ProductDescription>
<ProductName>aName</ProductName>
<GlobalProductIdentifier>123456890</GlobalProductIdentifier>
<FinancialAmount>

<MonetaryAmount>50</MonetaryAmount>
<GlobalCurrencyCode>SF</GlobalCurrencyCode>

</FinancialAmount>
</ProductDescription>

</ProductInformationResponse>

Figure 8-61 An Example Product Information Query Response

8-72

8.5.3 Disjunction Design Pattern
The disjunction design pattern is useful for representing business information entities
that contain one or more of a number of disjunctive entities (the pattern is also useful to
inherit common data properties). This pattern is not necessary for representations of
zero or more of a number of disjunctive entities. Figure 8-62 illustrates a model that
employs a disjunctive design pattern.

Quantity
<<DataEntity>>

Magnitude
<<Fundam entalDa taEntity>>

1

Quality
<<DataE nt ity>>

Value
<<Fundam entalDataEntity>>

1

Com ponentTechnicalSpe cifi cation
<<DataEntity>>

1 1

Specification
<<DataEntity>>1..*1..*

GlobalSpecificationNameCode
<<FundamentalDataEntity>>

11

Figure 8-62 Disjunctive Data Entity Model
A component technical specification contains one or more specifications that are either
quantities or qualities. Other representations of this specification allow either zero or
more or two or more specification properties; now of which are meet the requirements
of one or more specifications. Note that the specification data entity in Figure 8-62 is
abstract (italicized class name). This prevents the data entity from being used as an
object.
Figure 8-63 illustrates how the representation is shown in a message guideline
document. The Choice node in the hierarchy shows the cardinality of one or more and
the choice (disjunctive) nodes do not show any cardinality. The inherited
GlobalSpecificationNameCode is repeated for each concrete class in the data entity
model.

8-73

ComponentTechnicalSpecification
1..* Choice

Quantity
1 Magnitude
1 GlobalSpecificationNameCode

Quality
1 Value
1 GlobalSpecificationNameCode

Figure 8-63 Disjunction Illustrated in a Message Guideline
The XML document schema for this design pattern is shown in Figure 8-64.

<!ELEMENT ComponentTechicalSpecification (Quantity |
Quality)+ >

<!ELEMENT Quantity (Magnitude,
GlobalSpecificationNameCode) >

<!ELEMENT Quality (Value,
GlobalSpecificationNameCode) >

<!ELEMENT Magnitude (PCDATA) >
<!ELEMENT Value (PCDATA) >
<!ELEMENT GlobalSpecificationNameCode (PCDATA) >

Figure 8-64 Disjunction Design Pattern Document Schema
A compliant XML document can provide one ore more occurrences of the quantity or
quality specification properties.

8-74

8.5.4 Reification Design Pattern
The reification design pattern is useful for representing common business information
entities that share a common design pattern but are verbose in their representation.
Figure 8-65 illustrates an entity model for representing a manufacturer name and a
product name.

Product
<<DataEntity>>

ProductName
<<DataEntity>>

1

GlobalLanguageCode
<<Fundam entalDataEntity>>

1

ManufacturerName
<<Dat aEntity>>

1

1

FreeFormText
<<Fundam entalDataEntity>>

1

11

1

1

1

1

1

Figure 8-65 Illustration of a Free Form Text Entity
Each ‘name’ entity contains a free form text entity and a global language code. It is very
verbose to specify these entities and relationships for each ‘name’ entity in a large
entity model. Figure 8-66 illustrates how the ManufacturerName and the ProductName
entities can be reified to property names if a design pattern always emits a global
language code requirement for each free form text requirement.

Product
<<DataEntity>>

FreeFormText
<<Fundam entalDataEntity>>

11

11

+m anufacture rNam e

+productName

Figure 8-66 Illustration of Reified Data Entities
The XML document schema for this design pattern is shown in Figure 8-67.

8-75

<!ELEMENT Product (manufacturerName,
productName) >

<!ELEMENT manufacturerName (FreeFormText) >
<!ELEMENT productName (FreeFormText) >
<!ELEMENT FreeFormText (PCDATA) >
<!ATTLIST FreeFormText

xml:lang CDATA #REQUIRED >

Figure 8-67 Reification Document Schema
The xml:lang attribute is added to each free form text element. Figure 8-67 illustrates
the xml:lang attribute as CDATA and not as an enumerated option list as this could lead
to very large files.
The BCF uses this design pattern to reify the language code for free form text and the
physical unit of measure code for each quantitative data entity.

8-76

8.5.5 UML/XML Translation Design Pattern

The UML/XML DTD design pattern is useful for translating UML business document
models into XML DTD document schema. It can be confusing, however, when the
cardinality of data entities in a message guideline do not concur with the cardinality of
XML DTD elements in a document schema. The reason for this discrepancy is that all
the elements in a DTD are globally scoped. XML technology does provide tag syntax
for namespace declaration but this can become verbose with deep element nesting.
The design pattern thus chosen for UML to XML DTD conversion renders a DTD
inadequate for validating a message with respect to a message guideline. Applications
are therefore required to validate messages with respect to a guideline and not only
with respect to a DTD.

Figure 8-68 illustrates an example data entity model where a Document entity
comprises a fromBusiness and toBusiness declaration and a Business comprises zero
or one Address entity.

Address
<<DataEntity>>

Document
<<DataEntity>>

BusinessDescription
<<Dat aEnti ty >>

0..1

1

1

+toBusiness

+fromBusiness

1

1 0..1

Figure 8-68 Illustration of a Data Entity Model
The UML model in Figure 8-68 is a ‘network’ model in that nodes in the network are
interrelated in a network of associations. A message guideline, however, is a canonical
hierarchy where each node in unique even though it is prototyped on a node in the
UML network model. The algorithm to covert the network to a canonical hierarchy
produces a graph shown in Figure 100 where each node in the graph is dependant on
a prototypical node in the network.
The graph is a guideline that is modified to accurately represent the business data
requirements. For example, Figure 8-69 illustrates that the toBusiness declaration of a
BusinessDescription is not required to contain an Address (it needs to contain at least
one Fundamental Data Entity but for the purposes of this illustration it is not necessary
to show this). The fromBusiness declaration of a BusinessDescription is, however,
required to contain an Address.

8-77

BusinessDescription.2

Document.1

1

Bus in essDescriptio n.4

1
Address.3

11

1

1

+toB usiness

+fromBusiness

Document
<<DataEnti ty>>

prototype
BusinessDescription

<<DataEntity>>

BusinessDescription
<<DataEntity>>

Address
<<DataEntity>>proto typ e

prototype

prototype

Figure 8-69 Illustration of a Canonical Hierarchy
The design of an algorithm that creates an XML DTD from the graph in Figure 8-69
needs to account for this conditional composition of the BusinessDescription node. It is
possible to create an extremely large DTD where each node of the DTD is labeled with
the name of the prototypical UML class and the unique identifier of the instance
necessary to provide unique identity with respect to the nodes in a canonical hierarchy.
The BCF design, however, does not take this route, as there is no requirement for
complete message validation with respect to a DTD. Instead, a DTD as shown in
Figure 8-70, is produced by the UML to XML DTD algorithm.

<!ELEMENT Document (fromBusiness,
toBusiness) >

<!ELEMENT fromBusiness (BusinessDescription) >
<!ELEMENT toBusiness (BusinessDescription) >
<!ELEMENT BusinessDescription (Address?) >
<!ELEMENT Address … >

Figure 8-70 Document Schema Example

8-78

The BusinessDescription element in Figure 8-70 specifies the Address sub-element as
optional that seems in disagreement with the specification in Figure 8-69. What is
more, the DTD permits zero sub-elements for BusinessDescription when provided as a
sub-element to toBusiness and it permits one sub-element for BusinessDescription
when provided as a sub-element to fromBusiness, both of which will be in
disagreement with the graph specification in Figure 8-69.

8.5.6 Business Document Design Pattern

The following information is required in all business documents.
• Each business document must contain information that identifies the role,

partner and business that is sending the business document. Each business
document must also contain information that identifies the role, partner and
business description that the document is going to. This information is similar to
the information contained in the letterhead of a business document. Only the
business identifier needs to be in the document as the identifier is the electronic
equivalent of an address. Figure 8-71 illustrates the role descriptions in a
business document.

1 From Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Global Partner Classification Code
1 | |-- Business Description
1 | | |-- Global Business Identifier
1 To Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Global Partner Classification Code
1 | |-- Business Description
1 | | |-- Global Business Identifier

Figure 8-71 Role Specification in a Business Document

• The contact information of the initiating role must be included into the business
document. The responding partner will be obligated to contact the initiating
partner if there are errors in the received business document and a response
(business signal or business document) cannot be delivered to the initiating
partner, or there is no response specified. Figure 8-72 illustrates the contact
information in a business document.

8-79

1 From Role. Partner Role Description
1 |-- Contact Information
1 | |-- Email Address
1 | |-- Telephone Number. Communications Number
1 | |-- Contact Name. Free Form Text

Figure 8-72 Contact Information in a Business Document
• The partner type, role type and supply chain code must be included as most

conditional composition constraints are predicated on this information. Figure 8-
73 illustrates supply chain specification in a business document.

1 From Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Business Description
1 | | |-- Global Supply Chain Code
1 To Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Global Partner Classification Code
1 | |-- Business Description
1 | | |-- Global Supply Chain Code

Figure 8-73 Supply Chain Specification in a Supply Chain
• Each document has an identifier. Each responding document must include the

identifier of a requesting document. This allows documents to be tracked and
reconciled. Figure 8-74 illustrates the specification of a document identifier in a
business document.

1 This Document Identifier. Proprietary Document Identifier
1 |-- Administered By. Business Description
1 |-- Document Identifier. Free Form Text
0..1 Requesting Document Identifier. Proprietary Document Identifier
1 |-- Administered By. Business Description
1 |-- Document Identifier. Free Form Text

Figure 8-74 Document Identifier in a Business Document
• Each document must have a time and date stamp for auditing control. The date

and time stamp is also used for legal purposes. Figure 8-75 illustrates the
specification of a data and time stamp in a business document.

8-80

1 Document Generation Date Time. Date Time Stamp
1 |-- Time Stamp
1 |-- Date Stamp

Figure 8-75 Data and Time Stamp in a Business Document

8.5.7 Request/Response Business Document Design Pattern

The request/response design pattern is useful for requesting a business partner to
perform a business action and to return a response that meets given constraints. This
design pattern differs from the query/response design pattern in two respects:

1. Semantically, a query/response transaction specifies an initiator’s request for
information that the responder has. A request/response transaction, however,
asks the responder to perform an action and return a result of the action. This is
an algorithmic response base on a prescriptive request.

2. Syntactically, a “Request” business document design pattern can comprise
business rules that apply to the aggregation of the results in a response.
Business applications responding to a request need to perform an additional
processing step to apply these business rules to all the results of a query and
not to each result of a query.

Figure 8-76 illustrates a request/response data entity model. A product availability
request comprises zero or more query constraints, one or more business constraints
and zero ore more product descriptions. The query constraints are constraints that
must be met by each result returned in the response. The business constraints are the
constraints that must be met by the entire response. Consider, for example, an
initiator’s product availability request for a maximum of 100 products of a particular
type. The request for 100 products is a business constraint as the sum of all the
product availability results must not be greater than 100. The type of product is a query
constraint as each result must be the availability for the particular product type. A
responding business partner may have less than 100 products and the partner may
have more than 100 products in each of a number of locations. They therefore are
required to perform a business action that reasons about how they will respond to such
a request for availability. This may require some planning or optimisation algorithm to
provide the response.

A product availability response comprises zero or more product availability results that
match both the query constraint and the business constraint. A query constraint is an
Object Constraint Language (OCL) expression that constraints each result returned in
the response. A business constraint is an Object Constraint Language (OCL)
expression that constraints the response.

Specifying a template for the response results and placing constraints on the template
by either filling in some of the template content or by constraining the content of the
template using query constraints produces a product availability query. Filling in the
template in accordance with the already specified content, the query constraints and
the business constraints produces a product availability response.

8-81

GlobalProductIdentifier
<<FundamentalDataEntity>>

Bus iness Constraint
<<FundamentalDataEntity>>

QueryConstraint
<<FundamentalDataEntity>>

ProductAvailabilityRequest
<<BusinessDocument>>

1..n1..n

11

ProductAvai labil ityResponse
<<BusinessDocument>>

Quanti ty
<<FundamentalDataEntity>>

ProductDescription
<<DataE ntity>>

11

GlobalBusinessIdent ifier
<<FundamentalDataEnti ty >>

ProductAvai labil ity
<<DataEntity>>

11

0..n0..n

11 0..10..1

0..10..1

+locat ion

Figure 8-76 Request/Response Data Entity Model
The XML document schema for this design pattern is shown in Figure 8-77. The
product availability structure is used for both the request and response business
documents. The template for the request is created from the product availability
schema.

<!ELEMENT ProductAvailabilityRequest (BusinessConstraint+,
QueryConstraint*,
ProductAvailability) >

<!ELEMENT ProductAvailabilityResponse (ProductAvailability *) >
<!ELEMENT QueryConstraint (PCDATA) >
<!Element BusinessContraint (PCDATA) >
<!Element ProductAvailability (ProductDescription,

Quantity?,
GlobalBusinessIdentifier?) >

<!ELEMENT ProductDescription (GlobalProductIdentifier) >
<!ELEMENT GlobalProductIdentifier (PCDATA) >
<!ELEMENT Quantity (PCDATA) >

Figure 8-77 Request/Response Document Schema
An example product availability request is shown in Figure 8-78. Availability on a
product with the global product identifier is requested. The template requests the global
product identifier, availability and locations to be returned in the response.

8-82

<ProductAvailabilityRequest>
<QueryConstraint>

ProductAvailability.ProductDescription.GlobalProductIdentifier = 123456789
</QueryConstraint>
<BusinessConstraint>

(this->collect(ProductAvailability.Quantity))->sum <= 100
</BusinessConstraint>
<ProductAvailability>

<ProductDescription>
<GlobalProductIdentifier></GlobalProductIdentifier>

</ProductDescription>
<Quantity></Quantity>
<Location></Location>

</ProductAvailability>
</ProductAvailabilityRequest>

Figure 8-78 An Example Product Availability Request
An example product availability request response is shown in Figure 8-79. The result of
the request returns two product availability results, their product identifiers and the
location at which they are available. Note that the total number of available products is
100 and that the number of available products at each location is less than 100. [A
query/response design pattern cannot express this requirement].

<ProductAvailabilityResponse>
<ProductAvailability>

<ProductDescription>
<GlobalProductIdentifier>123456789</GlobalProductIdentifier>

</ProductDescription>
<Quantity>40</Quantity>
<location>

<GlobalBusinessIdentifier>987654321</GlobalBusinessIdentifier>
</location>

</ProductAvailability>

<ProductAvailability>
<ProductDescription>

<GlobalProductIdentifier>123456789</GlobalProductIdentifier>
</ProductDescription>
<Quantity>60</Quantity>
<location>

<GlobalBusinessIdentifier>654987321</GlobalBusinessIdentifier>
</location>

</ProductAvailability>
</ProductAvailabilityResponse>

Figure 8-79 An Example Product Availability Response

	Patterns
	Business Patterns
	Requirements Patterns
	Analysis Patterns
	Timeout Exceptions
	Business Protocol Exceptions
	Pattern Property Modification Rules
	Requesting Business Activity
	Object Flow
	Business Transaction Modeling Patterns
	Introduction
	Business Transaction State Semantics
	Business Transaction Pattern Rationale
	Business Transaction Pattern [Contract formation, e.g., place order]
	Query/Response Pattern [Static information, e.g., obtain catalog]
	Request/Response Pattern [Dynamic information, e.g., obtain Buyer ID, obtain quote]
	Request/Confirm Pattern [Status information, e.g., Obtain order status]
	Information Distribution Pattern
	Notification Pattern
	Notification of Failure Semantics

	Design Patterns
	Service-Service
	Agent-Service-Service
	Service-Service-Agent
	Service-Agent-Service
	Agent-Service-Agent

	Business Information Structure Design Patterns
	The Reference Design Pattern
	Query/Response Business Document Design Pattern
	Disjunction Design Pattern
	Reification Design Pattern
	UML/XML Translation Design Pattern
	Business Document Design Pattern
	Request/Response Business Document Design Pattern

