
15
Design

15.1
Purpose

15.2
Design Methodology

25.2.1
Design workflow Use Case

25.2.2
UMM Framework: Design Workflow

25.3
Business Service View Metamodel

35.3.1
Model Abstract Syntax

125.3.2
Model Semantics

175.3.3
Model Management Abstract Syntax & Semantics

195.4
The Business Service Interaction Design Metamodel

195.4.1
Model Abstract Syntax

295.4.2
Model Semantics

335.4.3
Model Management Abstract Syntax & Semantics

345.5
Business Service Interaction Diagram Pattern

355.5.1
Service-Service

395.5.2
Agent-Service-Service

435.5.3
Service-Service-Agent

475.5.4
Service-Agent-Service

535.5.5
Agent-Service-Agent

585.6
Business Information Structure Design Metamodel

595.6.1
Business Information Model Abstract Syntax

615.6.2
Model Semantic

655.7
Business Information Structure Design Patterns

655.7.1
The Reference Design Pattern

695.7.2
Query/Response Business Document Design Pattern

735.7.3
Disjunction Design Pattern

755.7.4
Reification Design Pattern

775.7.5
UML/XML Translation Design Pattern

795.7.6
Business Document Design Pattern

815.7.7
Request/Response Business Document Design Pattern

5 Design

5.1 Purpose

The purpose of the design workflow is:

· To develop an information model from the conceptual class diagram in the Analysis workflow
· To develop a business service view that describes the business collaborations amongst networked components
· To develop class diagrams that describe the business messages exchanged (business actions and signals) in a business collaboration
· Integrate the information model into an inter-industry model

· Integrate business objects into the information model

· Select business service interaction patterns to describe each exchange

5.2 Design Methodology

The fundamental principle for the design workflow is to describe the business collaborations between networked components, the information model that describes the domain and the business documents, and the application of business service interaction design patterns.

5.2.1 Design workflow Use Case

The design workflow use case involves only the technical modeler as shown in Figure 42. This shows that the work effort is primarily technical, and is closer to the real implementation, despite still being in a protocol neutral environment.

[image: image1.wmf]Technical

Modeler

(from Actors)

Design the Services and

Information Models

Figure 42. Design Workflow Use Case Diagram
5.2.2 UMM Framework: Design Workflow

Figure 43 highlights the methodology steps, and the artifacts created.

Workflow
Methodology
Pattern
Model Artifacts [UML]

Design
· Process Analysis

· Collaboration Modelling

· Message Sequencing

· Information Modelling

· Business Message Modelling (protocol neutral)
· Business Service Interaction Patterns

· Information Modelling Patterns
BSV

· Service Collaboration [Object Collaboration]

· Network Component [Class Diagram]

· Business Service [Class Diagram]

· Service Transactions [Sequence Diagram]

· Business Documents (detail) [Class Diagram]

Figure 43. Extract from the UMM Framework

5.3 Business Service View Metamodel

The Business Service View Metamodel captures the syntax and semantics of business actions and their exchange between network components that provide business services. The BSV’s metamodel specifies the elements of an execution process (Service Collaboration) that comprises business transaction exchange between network component business services as a result of the execution of business activities. The functional service model is a reification of the Business Transaction View model.

The first part of this section specifies the syntax and semantics of execution processes. The second part of this section specifies the organizational management elements of these execution process models.

5.3.1 Model Abstract Syntax

5.3.1.1 Stereotypes and Tagged Values

Figure 44 specifies the modeling elements and their interrelationships that are used to express the structure and behavior of objects in the BSV of a Business Transaction and Business Collaboration Protocol model. Each element and interrelationship permitted in a BSV is defined in the metamodel specified in this section of the document.

[image: image2.wmf]Business Service View

Metamodel (Collaboration Elements)

ServiceCollaboration

baseElement = Collaboration

<<

stereotype>>

NetworkComponent

baseElement = Class

isSecureTransportRequired : Boolean

<<

stereotype>>

BusinessSignalMessage

baseElement = Class

BusinessActionMessage

<<

stereotype>>

ServiceTransaction

baseElement = Class

isNonRepudiationRequired : Boolean

isAuthenticationRequired : Boolean

timeToPerform :

TimeExpression

timeToAcknowledgeReceipt :

TimeExpression

timeToAcknowledgeAcceptance :

TimeExpression

<<

stereotype>>

MessageEnvelope

baseElement = Class

<<

stereotype>>

BusinessMessage

<<>

baseElement = Class

RequestingServiceTransaction

recurrence :

NaturalNumber

isNonRepudiationOfReceiptRequired : Boolean

<<

stereotype>>

RespondingServiceTransaction

isIntelligibleCheckRequired : Boolean

<<

stereotype>>

BusinessService

callTransaction(a :

RequestingServiceTransaction)

request(a :

BusinessAction)

signal(a :

BusinessSignal)

response(a :

BusinessAction)

return(a :

BusinessAction)

checkProcessControls()

checkSecurityControls()

<<

stereotype>>

Agent

return(a :

BusinessAction)

transfer(a :

BusinessAction)

<<

stereotype>>

1

+

forService

1

StructuredMessage

(

from Information Model)

Figure 44. BSV Abstract Syntax

Agent

An agent is a network component that must implement protocols up to the agent layer of the e-business network application, communications model.

Associations:

forService. An agent acts on behalf of a service.

Operations:

return(a:BusinessActionMessage). Return a business action message to this agent. This agent becomes the owner of the business action. The argument may not be null.

transfer(a: BusinessActionMessage). Transfer a business action message to this agent. This agent becomes the owner of the business action. The argument may not be null.

BusinessService

A business service is a network component that responds to business transaction requests initiated by other services.

Operations:

callTransaction(a: RequestingServiceTransaction).
response(a:BusinessAction). Response to a timed (synchronous) business action request.

request(a:BusinessAction). Request to perform a business action. This request can be timed or asynchronous.

signal(a:BusinessAction). Asynchronous signal returned for security, auditing and execution control.

return(a:BusinessAction). Return a business transaction from an enterprise component after a business action has been performed.

checkProcessControls(). Requests the Business Service to validate the current state of the current business transaction.

checkSecurityControls().Requests the Business Service to validate the security controls of the current business transaction.

Associations:

transactions. The ServiceTransactions that support this BusinessService.

ServiceTransaction

A ServiceTransaction is a mutually binding interaction between an initiating service and a responding service.

Tagged Values:

isNonRepudiationRequired. If non-repudiation of origin and content is required then the business activity must store the business document in its original form for the duration mutually agreed to in a trading partner agreement. A responding partner must signal a business control exception if the sending partner role has not properly delivered their business document. A requesting partner must send notification of failed business control if a responding partner has not properly delivered their business document.

This property provides the following audit controls:
Verify sending role identity (authenticate)
 – Verify the identity of the sending role (employee or organization). For example, a driver’s license or passport document with a picture is used to verify an individual’s identity by comparing the individual against the picture.
Verify content integrity – Verify the integrity of the original content sent from a partner role i.e. check that the content has not been altered by a 3rd party while the content was exchanged between partners.

timeToPerform. Both partners agree to perform a business transaction within a specific duration. A responding partner must exit the transaction if they are not able to respond to a business document request within the agreed timeout period. A sending partner must retry a business transaction if necessary or must send notification of failed business control (possibly revoking a contractual offer) if a responding partner does not deliver their business document within the agreed time period. The time to perform is the duration from the time a business document request is sent by a requesting partner role until the time a responding business document is “properly received” by the requesting partner role. Both partners agree that the business signal document or business action document specified as the document to return within the time to perform is the “Acceptance Document” in an on-line offer/acceptance contract formation process.

timeToAcknowlegeReceipt. Both partners agree to mutually verify receipt of a requesting business document within specific time duration. A responding partner must exit the transaction if they are not able to verify the proper receipt of a business document request within the agree timeout period. A sending partner must retry a business transaction if necessary or must send notification of failed business control (possibly revoking a contractual offer) if a responding partner does not verify properly receipt of a business document request within the agreed time period. The time to acknowledge receipt is the duration from the time a business document request is sent by a requesting partner until the time a verification of receipt is “properly received” by the requesting business partner. This verification of receipt is an audit-able business signal and is instrumental in contractual obligation transfer during a contract formation process (e.g. offer/accept).

timeToAcknowledgeAcceptance. Both partners agree to the need for a business acceptance document to be returned by a responding partner after the requesting business document passes a set of business rules. The time to acknowledge business acceptance of a requesting business document is the duration from the time a requesting partner sends a business document until the time an acknowledgement of acceptance is “properly received” by the requesting partner. A responding partner must exit the transaction if they are not able to acknowledge business acceptance of a business document request within the agreed timeout period. A sending partner must retry a business transaction if necessary or must send notification of failed business control (possibly revoking a contractual offer) if a responding partner does not acknowledge acceptance of a business document within the agreed time period.

Associations:

requestingAction. The BusinessActionMessage that initiates this ServiceTransaction.

respondingAction. The BusinessActionMessage that is the response to theRequestingAction Not all requesting actions require a response message. In this case a ‘non-substantive’ acknowledgement is sufficient.

receiptAcknowledgement. A BusinessSignalMessage that affirms receipt of a BusinessActionMessage.

exceptions.
BusinessSignalMessages that report control or process exceptions.

acceptanceAcknowledgement. An acceptanceAcknowledgement is a BusinessSignalMessage that affirms the acceptance of a action request. This business signal is an acceptance from a legal viewpoint. Through this acceptance mechanism, responsibility for the transaction is transferred to the responding business service.

NetworkComponent

A network component is a logical computing component in a distributed network environment.

Tagged Values:

isSecuredTransportRequired. Both partners must agree to exchange business information using a secure transport channel. The security controls ensure that business document content is protected against unauthorized disclosure or modification and that business services are protected against unauthorized access. This value is derived from the isSecuredTransportRequired property of the BusinessTransaction in the BTV.

BusinessMessage

A BusinessMessage is a document or information that is exchange between business processes.

Associations:

header.
Message header that contains security, signature and dictionary reference information.

MessageEnvelope

A MessageEnvelope is container used to route BusinessActionMessages.

Associations:

header.
Message header that contains security, signature and dictionary reference information.

body.
One or more business messages that are carried with this envelope.

prototype.
Identification of the message envelope prototype.

BusinessActionMessage

A BusinessActionMessage is a specialized StructuredMessage used to convey BusinessDocuments (from BTV) between two business processes via a network component.

BusinessSignalMessage

A BusinessSignalMessage is used to convey control and exception conditions between two business processes.

Associations:

forAction.
References the BusinessActionMessage that this BusinessSignalMessage correlates to. Signals are returned to an initiating service by a responding service.

RequestingServiceTransaction

A RequestingServiceTransaction is the initial business transaction within a CommercialTransaction.

Tagged Values:

recurrence. Specifies the number of attempts a RequestingServiceTransaction may be sent in response to a control exception. Control exceptions are those which were generated as a result of a control failure (e.g. TimeOut, Authentication, ect)

isNonRepudiationOfReceiptRequired. The isNonRepudiationOfReceiptRequired is derived from the RequestingBusinessActivity(BTV) and indicates that both partners agree to mutually verify receipt of a requesting business document and that the receipt must be non-reputable.

RespondingServiceTransaction

A RespondingServiceTransaction is the responding business transaction within a BusinessTransaction to a particular RequestingServiceTransaction.

Tagged Values:

isIntelligibleCheckRequired. Both partners agree that a responding partner role must check that a requesting document is not garbled (unreadable, unintelligible) before verification of properly receipt is returned to the requesting partner.

ServiceCollaboration

A ServiceCollaboration comprises a set of interactions (service request) between network components, which comprises one business collaboration (from BTV).

Associations:

components.
References the NetworkComponent that participates in this collaboration.

interactions.
References the BusinessTransactions that are exchanged between the NetworkComponents.

Figure 45 specifies the modeling elements and their interrelationships that are used to express the structure and behavior of objects in the Business Signal model. Each element and interrelationship permitted in a Business Signal is defined in the metamodel specified in this section of the document.

[image: image3.wmf]BusinessSignalMessage

baseElement = Class

Acknowledgement

BusinessException

AcceptanceAcknowledgement

ReceiptAcknowledgement

ControlException

Business Signals

Exception

Figure 45. BSV Abstract Syntax (Business Signals)

Acknowledgement

An acknowledgement is an asynchronous business signal that acknowledges some aspect of a received business action message (request). The acknowledgement is sent to the service from which the business action message was received.

AcceptanceAcknowledgement

An acceptance acknowledgement business signal is returned to the initiating service if the business action message (request) content is valid with respect to the responding services business rules and the responding service is willing to perform further processing activities with this content. The initiating service must not assume that the responding service will act on a request that has not been accepted by the responding service. A trading partner agreement must agree that a receiving service has “legally” accepted a business action request (BusinessActionMessage) when the BusinessActionMessage has been “accepted” by the receiving service. At this point there is transference of legal responsibility for the fulfillment of this request by the receiving service. This signal is required if the correlating ServiceTransaction has the timeToAcknowledgeAcceptance attribute set to a duration greater than zero.

BusinessSignal

A business signal is an object that is transmitted asynchronously back to an activity that initiated the transfer of business process execution control.

ControlException

A ControlException signals an error condition in the management of a ServiceTransaction within a ServiceCollaboration. This signal is asynchronously returned to the initiating service that originated the request. This exception must terminate the ServiceCollaboration. These errors deal with the mechanisms of message exchange such as verification, validation, authentication and authorization and will occur up to message acceptance. Typically the rules and constraints applied to the message will have only dealt with structure, syntax and message element values.

ProcessException

A ProcessException signals an error condition in a business activity. This signal is asynchronously returned to the initiating service that originated the request. This exception must terminate the ServiceCollaboration. These errors deal with the mechanisms that process the ServiceTransaction and will occur after message verification and validation. Typically the rules and constraints applied to the message will deal the semantics of message elements and the validity of the request itself and the content is not valid with respect to a responding service’s business rules. This type of exception is usually generated after an AcceptanceAcknowledgement has been returned.

ReceiptAcknowledgement

Acknowledges the receipt of a BusinessActionMessage. This business signal is returned by the responding service to acknowledge the receipt of a BusinessActionMessage if it is syntactically and structurally valid. A trading partner agreement must agree that a receiving service has “legally” received a business action request (BusinessActionMessage) when the BusinessActionMessage can be “read” by the receiving service. This signal is required if the correlating has the timeToAcknowledgeReceipt attribute set to a duration greater than zero.

5.3.1.2 Well-formedness Rules

The following well-formedness rules apply to the BSV metamodel package.

5.3.2 Model Semantics

The semantics of each element of the BSV metamodel is defined in this section.

Figure 46 illustrates the interrelationships between the BSV modeling elements.

[image: image4.wmf]EnterpriseComponent

perform()

perform()

return()

isValid()

isAcceptable()

ServiceCollaboration

baseElement = Collaboration

<<

stereotype>>

NetworkComponent

baseElement = Class

isSecureTransportRequired : Boolean

<<

stereotype>>

Agent

return()

transfer()

<<

stereotype>>

BusinessService

callTransaction()

request()

signal()

response()

return()

checkProcessControls()

checkSecurityControls()

<<

stereotype>>

1

+

forService

1

1

..n

1

..n

+

actor

1

..n

1

..n

BusinessActionMessage

<<

stereotype>>

BusinessSignalMessage

baseElement = Class

ServiceTransaction

baseElement = Class

isNonRepudiationRequired : Boolean

isAuthenticationRequired : Boolean

timeToPerform :

TimeExpression

timeToAcknowledgeReceipt :

TimeExpression

timeToAcknowledgeAcceptance :

TimeExpression

<<

stereotype>>

1

..n

1

+

transactions

1

..n

1

0

..1

+

respondingAction

0

..1

1

+

requestingAction

1

0

..1

+

receiptAcknowledgement

0

..1

0

..1

+

acceptanceAcknowledgement

0

..1

0

..n

+

exceptions

0

..n

RequestingState

(

from Requester)

RequestingServiceTransaction

recurrence :

NaturalNumber

isNonRepudiationOfReceiptRequired : Boolean

<<

stereotype>>

1

1

..n

1

1

..n

RespondingState

(

from Responder)

RespondingServiceTransaction

isIntelligibleCheckRequired : Boolean

<<

stereotype>>

1

1

..n

1

1

..n

components

1

..n

BSV Semantic Model

Figure 46. BSV Model Semantics

5.3.2.1 Agent

An agent acts on behalf of a service. An agent can be a user agent such as a web browser but may also be an agent acting on behalf of another service. An agent is a network component that must implement protocols up to the agent layer of the e-business network application, communications model. An agent has no network identity as a business service component. A user agent acts as an intermediary between a business service and an employee.

5.3.2.2 BusinessService

A business service is a network component that responds to business transaction requests initiated by other services. A business service implements protocols in all of the layers of the e-business network application, communication model. Business services monitor the execution of service collaborations. A service component has network identity as a business service.

5.3.2.3 ServiceTransaction

A ServiceTransaction is a mutually binding interaction between an initiating service and a responding service. There may be zero or more business signals exchanged during the interaction that can be used for security, auditing and process control. A set of business transactions as defined by a BusinessTransaction (from BTV) is a unit of work. Both services in the BusinessTransaction (CT) must agree to the CT’s conclusion or both sides must roll back to a state before the intial RequestingServiceTransaction was initiated.

A timed ServiceTransaction is a synchronous transaction that must complete within the specified time. An asynchronous transaction is a one-way exchange of a business action.

5.3.2.4 NetworkComponent

A network component is a logical computing component in a distributed network environment. Network transport security is specified and enabled by the network component.

5.3.2.5 BusinessMessage

A BusinessMessage is an information document that is exchange between business processes. The message header provides for security, signature and dictionary reference information.

5.3.2.6 MessageEnvelope

A MessageEnvelope is used to define routing information and privacy properties for one or more BusinessActionMessage that is contained within the message envelope. The MessageEnvelope is the highest level of containment for information that is exchange between two business processes.

5.3.2.7 BusinessActionMessage

A BusinessActionMessage is a specialized StructuredMessage used to convey BusinessDocuments (from BTV) between two business processes via a network component.

5.3.2.8 BusinessSignalMessage

A BusinessSignalMessage is a specialized StructuredMessage used to convey control and exception conditions between two business processes as it relates to a particular BusinessActionMessage request. A BusinessSignalMessage is transmitted asynchronously back to an business process that initiated the transfer of business process execution control.

5.3.2.9 RequestingServiceTransaction

A RequestingServiceTransaction is the initial business transaction within a CommerialTransaction. When a BusinessTransaction fails, the rollback is to the state of the system and business process as it was just before the initiation of the transaction. If the recurrence property is set to a positive value the request is tried again until the count is decremented to zero. Retrys only occur on the receipt of a control exception which may an indicator that the failure could have been technical in nature. If the exception was a process exception then the recurrence counter is not applicable, since the exception was generated due to the failure of a business rule and must be redress by higher level processes.

If a isNonRepudiationOfReceiptRequired is true, this indicates that both partners agree to mutually verify receipt of a requesting business document and that the receipt must be non-reputable. A receiving partner must send notification of failed business control (possibly revoking a contractual offer) if a responding partner has not properly delivered their business document.

Non-repudiation of receipt provides the following audit controls.
Verify responding role identity (authenticate)
 – Verify the identity of the responding role (individual or organization) that received the requesting business document.
Verify content integrity – Verify the integrity of the original content of the business document request.

5.3.2.10 RespondingServiceTransaction

A RespondingServiceTransaction is the responding business transaction within a BusinessTransaction to a particular RequestingServiceTransaction. Typically all BusinessTransaction are defined in RequestingServiceTransaction/ RespondingServiceTransaction pairs. If the isIntelligibleCheckRequired property is true then both partners agree that a responding partner role must check that a requesting document is not garbled (unreadable, unintelligible) before verification of properly receipt is returned to the requesting partner. Verification of receipt must be returned when a document is “accessible” but it is preferable to also check for garbled transmissions at the same time in a point-to-point synchronous business network where partners interact without going through an asynchronous service provider.

5.3.2.11 Service Collaboration

A ServiceCollaboration specifies the interactions between network components. It specifies the conditions and/or constraints by which interactions are executed.

Message Model Semantics

Figure 47 specifies the semantics for the definition of business messages.

[image: image5.wmf]BusinessActionMessage

<<stereotype>>

BusinessSignalMessage

baseElement = Class

UnstructuredMessage

body : String

forAction

StructuredMessage

BusinessMessage

<<>baseElement = Class

MessageEnvelope

baseElement = Class

<<stereotype>>

0..n

+body

0..n

ElementId

baseElement = ModelElement

0..1

+prototype

0..1

0..1

+prototype

0..1

Entity

baseClass = "Class"

isSecureEntity : Boolean

isSignatureEntity : Boolean

abreviation : String

dictionaryReference : String

<<stereotype>>

1..n

+body

1..n

1..n

+header

1..n

1..n

+header

1..n

0..1

+prototype

0..1

Figure 47. BSV Message Model Semantics

5.3.2.12 BusinessActionMessage

The BusinessActionMessage specifies the business activity that processes a business request and the header and body of the message. The BusinessActionMessage maps to the business document that was defined in the BTV and defines process routing and security constraints

5.3.2.13 ElementId

The ElementId identifies the dictionary prototype template that defines the MessageEvelope, BusinessMessage and the Entities used in the construction of the message.

5.3.2.14 InformationEntity

An Entity is the basic element for specifying information elements. Along with the name and type, it specifies privacy and security for the information.

5.3.2.15 MessageEnvelope

A MessageEnvelope is the highest level container for transporting business documents between business processes via network components.

5.3.2.16 BusinessActionMessage

A BusinessActionMessage is a specialization of a StructuredMessage used to invoke a business process in the receiving system.

5.3.2.17 BusinessSignalMessage

A BusinessSignalMessage is a specialization of a StructuredMessage used to convey control and process exceptions occurring in a business process in the receiving system to a business process in the initiating system.

5.3.2.18 UnstructuredMessage

A UnstructuredMessage is a specialization of a BusinessMessage used to transport arbitrary bit streams such as would be the case for images, video and audio.

5.3.2.19 StructuredMessage

A StructuredMessage is a specialization of a BusinessMessage used to transport structured information.

5.3.3 Model Management Abstract Syntax & Semantics

The following stereotypes and tagged values are contained in the Business Service View management metamodel. Figure 48 illustrates the interrelationships between the BSV model management and model elements.

[image: image6.wmf]Business Service

View Model Management

NetworkComponent

<<

stereotype>>

ServiceCollaboration

<<

stereotype>>

components

1

..n

BusinessTransaction

<<

stereotype>>

interactions

1

..n

BusinessServiceView

baseElement = Model

<<

stereotype>>

1

..n

+

executionProcessParticipants

1

..n

1

..n

+

theTransactionDialogs

1

..n

1

..n

1

..n

executionProcessInteraction

BusinessActionMessage

<<

stereotype>>

1

+

respondingAction

1

0

..1

+

requestingAction

0

..1

1

..n

business Actions

1

..n

Figure 48. BTV Model Management Illustration

5.4 The Business Service Interaction Design Metamodel

This Business Service Interaction Design (BSID) of the e-business partner interface process metamodel captures the syntax and semantics of business actions and their exchange between Business Services that provide business services. The BSID’s metamodel specifies the elements of an execution process (Service Collaboration) that comprises business transaction exchange between business services as a result of the execution of business activities. The functional service model is a reification of the Business Transaction View model.

The first part of this section specifies the syntax and semantics of execution processes. The second part of this section specifies the organizational management elements of these execution process models.

5.4.1 Model Abstract Syntax

5.4.1.1 Stereotypes and Tagged Values

Figure 49 specifies the modeling elements and their interrelationships that are used to express the structure and behavior of objects in the BSV of a Business Transaction and Business Collaboration Protocol model. Each element and interrelationship permitted in a BSV is defined in the metamodel specified in this section of the document.

[image: image7.wmf]Business Service View Metamodel (Collaboration Elements)

ServiceCollaboration

baseElement = Collaboration

<<stereotype>>

NetworkComponent

baseElement = Class

isSecureTransportRequired : Boolean

<<stereotype>>

BusinessSignalMessage

baseElement = Class

BusinessActionMessage

<<stereotype>>

ServiceTransaction

baseElement = Class

isNonRepudiationRequired : Boolean

isAuthenticationRequired : Boolean

timeToPerform : TimeExpression

timeToAcknowledgeReceipt : TimeExpression

timeToAcknowledgeAcceptance : TimeExpression

<<stereotype>>

MessageEnvelope

baseElement = Class

<<stereotype>>

BusinessMessage

<<>baseElement = Class

RequestingServiceTransaction

recurrence : NaturalNumber

isNonRepudiationOfReceiptRequired : Boolean

<<stereotype>>

RespondingServiceTransaction

isIntelligibleCheckRequired : Boolean

<<stereotype>>

BusinessService

callTransaction(a : RequestingServiceTransaction)

request(a : BusinessActionMessage)

signal(a : BusinessSignalMessage)

response(a : BusinessActionMessage)

return(a : BusinessActionMessage)

checkProcessControls()

checkSecurityControls()

<<stereotype>>

Agent

return(a : BusinessActionMessage)

transfer(a : BusinessActionMessage)

<<stereotype>>

1

+forService

1

StructuredMessage

(from Information Model)

Figure 49. BSID Abstract Syntax

Agent

An agent is a Business Service that shall implement protocols up to the agent layer of the e-business network application, communications model.

Associations:

forService. An agent acts on behalf of a service.

Operations:

return(a:BusinessActionMessage). Return a business action message to this agent. This agent becomes the owner of the business action. The argument may not be null.

transfer(a: BusinessActionMessage). Transfer a business action message to this agent. This agent becomes the owner of the business action. The argument may not be null.

BusinessService

A business service responds to business transaction requests initiated by other services.

Operations:

callTransaction(a: RequestingServiceTransaction).
response(a:BusinessAction). Response to a timed (synchronous) business action request.

request(a:BusinessAction). Request to perform a business action. This request can be timed or asynchronous.

signal(a:BusinessAction). Asynchronous signal returned for security, auditing and execution control.

return(a:BusinessAction). Return a business transaction from an enterprise component after a business action has been performed.

checkProcessControls(). Requests the Business Service to validate the current state of the current business transaction.

checkSecurityControls().Requests the Business Service to validate the security controls of the current business transaction.

Associations:

transactions. The ServiceTransactions that support this BusinessService.

ServiceTransaction

A ServiceTransaction is a mutually binding interaction between an initiating service and a responding service.

Tagged Values:

isNonRepudiationRequired. If non-repudiation of origin and content is required then the business activity shall store the business document in its original form for the duration mutually agreed to in a trading partner agreement. A responding partner shall signal a business control exception if the sending partner role has not properly delivered their business document. A requesting partner shall send notification of failed business control if a responding partner has not properly delivered their business document.

This property provides the following audit controls:
Verify sending role identity (authenticate)
 – Verify the identity of the sending role (employee or organization). For example, a driver’s license or passport document with a picture is used to verify an individual’s identity by comparing the individual against the picture.
Verify content integrity – Verify the integrity of the original content sent from a partner role i.e. check that the content has not been altered by a 3rd party while the content was exchanged between partners.

timeToPerform. Both partners agree to perform a business transaction within a specific duration. A responding partner shall exit the transaction if they are not able to respond to a business document request within the agreed timeout period. A sending partner shall retry a business transaction if necessary or shall send notification of failed business control (possibly revoking a contractual offer) if a responding partner does not deliver their business document within the agreed time period. The time to perform is the duration from the time a business document request is sent by a requesting partner role until the time a responding business document is “properly received” by the requesting partner role. Both partners agree that the business signal document or business action document specified as the document to return within the time to perform is the “Acceptance Document” in an on-line offer/acceptance contract formation process.

timeToAcknowlegeReceipt. Both partners agree to mutually verify receipt of a requesting business document within specific time duration. A responding partner shall exit the transaction if they are not able to verify the proper receipt of a business document request within the agree timeout period. A sending partner shall retry a business transaction if necessary or shall send notification of failed business control (possibly revoking a contractual offer) if a responding partner does not verify properly receipt of a business document request within the agreed time period. The time to acknowledge receipt is the duration from the time a business document request is sent by a requesting partner until the time a verification of receipt is “properly received” by the requesting business partner. This verification of receipt is an audit-able business signal and is instrumental in contractual obligation transfer during a contract formation process (e.g. offer/accept).

timeToAcknowledgeAcceptance. Both partners agree to the need for a business acceptance document to be returned by a responding partner after the requesting business document passes a set of business rules. The time to acknowledge business acceptance of a requesting business document is the duration from the time a requesting partner sends a business document until the time an acknowledgement of acceptance is “properly received” by the requesting partner. A responding partner shall exit the transaction if they are not able to acknowledge business acceptance of a business document request within the agreed timeout period. A sending partner shall retry a business transaction if necessary or shall send notification of failed business control (possibly revoking a contractual offer) if a responding partner does not acknowledge acceptance of a business document within the agreed time period.

Associations:

requestingAction. The BusinessActionMessage that initiates this ServiceTransaction.

respondingAction. The BusinessActionMessage that is the response to theRequestingAction Not all requesting actions require a response message. In this case a ‘non-substantive’ acknowledgement is sufficient.

receiptAcknowledgement. A BusinessSignalMessage that affirms receipt of a BusinessActionMessage.

exceptions.
BusinessSignalMessages that report control or process exceptions.

acceptanceAcknowledgement. An acceptanceAcknowledgement is a BusinessSignalMessage that affirms the acceptance of a action request. This business signal is an acceptance from a legal viewpoint. Through this acceptance mechanism, responsibility for the transaction is transferred to the responding business service.

NetworkComponent

A Business Service is a logical computing component in a distributed network environment.

Tagged Values:

isSecuredTransportRequired. Both partners shall agree to exchange business information using a secure transport channel. The security controls ensure that business document content is protected against unauthorized disclosure or modification and that business services are protected against unauthorized access. This value is derived from the isSecuredTransportRequired property of the BusinessTransaction in the BTD.

BusinessMessage

A BusinessMessage is a document or information that is exchange between business processes.

Associations:

header.
Message header that contains security, signature and dictionary reference information.

MessageEnvelope

A MessageEnvelope is container used to route BusinessActionMessages.

Associations:

header.
Message header that contains security, signature and dictionary reference information.

body.
One or more business messages that are carried with this envelope.

prototype.
Identification of the message envelope prototype.

BusinessActionMessage

A BusinessActionMessage is a specialized StructuredMessage used to convey BusinessDocuments (from BTD between two business processes via a Business Service.

BusinessSignalMessage

A BusinessSignalMessage is used to convey control and exception conditions between two business processes.

Associations:

forAction.
References the BusinessActionMessage that this BusinessSignalMessage correlates to. Signals are returned to an initiating service by a responding service.

RequestingServiceTransaction

A RequestingServiceTransaction is the initial business transaction within a CommerialTransaction.

Tagged Values:

recurrence. Specifies the number of attempts a RequestingServiceTransaction may be sent in response to a control exception. Control exceptions are those which were generated as a result of a control failure (e.g. TimeOut, Authentication, ect)

isNonRepudiationOfReceiptRequired. The isNonRepudiationOfReceiptRequired is derived from the RequestingBusinessActivity(BUSINESS TRANSACTION DESIGN) and indicates that both partners agree to mutually verify receipt of a requesting business document and that the receipt shall be non-reputable.

RespondingServiceTransaction

A RespondingServiceTransaction is the responding business transaction within a BusinessTransaction to a particular RequestingServiceTransaction.

Tagged Values:

isIntelligibleCheckRequired. Both partners agree that a responding partner role shall check that a requesting document is not garbled (unreadable, unintelligible) before verification of properly receipt is returned to the requesting partner.

ServiceCollaboration

A ServiceCollaboration comprises a set of interactions (service request) between Business Services, which comprises one business collaboration (from BTD)

Associations:

components.
References the NetworkComponent that participates in this collaboration.

interactions.
References the BusinessTransactions that are exchanged between the NetworkComponents.

Figure 50 specifies the modeling elements and their interrelationships that are used to express the structure and behavior of objects in the Business Signal model. Each element and interrelationship permitted in a Business Signal is defined in the metamodel specified in this section of the document.

[image: image8.wmf]BusinessSignalMessage

baseElement = Class

Acknowledgement

BusinessException

AcceptanceAcknowledgement

ReceiptAcknowledgement

ControlException

Business Signals

Exception

Figure 50. BSID Abstract Syntax (Business Signals)

Acknowledgement

An acknowledgement is an asynchronous business signal that acknowledges some aspect of a received business action message (request). The acknowledgement is sent to the service from which the business action message was received.

AcceptanceAcknowledgement

An acceptance acknowledgement business signal is returned to the initiating service if the business action message (request) content is valid with respect to the responding services business rules and the responding service is willing to perform further processing activities with this content. The initiating service shall not assume that the responding service will act on a request that has not been accepted by the responding service. A trading partner agreement shall agree that a receiving service has “legally” accepted a business action request (BusinessActionMessage) when the BusinessActionMessage has been “accepted” by the receiving service. At this point there is transference of legal responsibility for the fulfillment of this request by the receiving service. This signal is required if the correlating ServiceTransaction has the timeToAcknowledgeAcceptance attribute set to a duration greater than zero.

BusinessSignal

A business signal is an object that is transmitted asynchronously back to an activity that initiated the transfer of business process execution control.

ControlException

A ControlException signals an error condition in the management of a ServiceTransaction within a ServiceCollaboration. This signal is asynchronously returned to the initiating service that originated the request. This exception shall terminate the ServiceCollaboration. These errors deal with the mechanisms of message exchange such as verification, validation, authentication and authorization and will occur up to message acceptance. Typically the rules and constraints applied to the message will have only dealt with structure, syntax and message element values.

ProcessException

A ProcessException signals an error condition in a business activity. This signal is asynchronously returned to the initiating service that originated the request. This exception shall terminate the ServiceCollaboration. These errors deal with the mechanisms that process the ServiceTransaction and will occur after message verification and validation. Typically the rules and constraints applied to the message will deal the semantics of message elements and the validity of the request itself and the content is not valid with respect to a responding service’s business rules. This type of exception is usually generated after an AcceptanceAcknowledgement has been returned.

ReceiptAcknowledgement

Acknowledges the receipt of a BusinessActionMessage. This business signal is returned by the responding service to acknowledge the receipt of a BusinessActionMessage if it is syntactically and structurally valid. A trading partner agreement shall agree that a receiving service has “legally” received a business action request (BusinessActionMessage) when the BusinessActionMessage can be “read” by the receiving service. This signal is required if the correlating has the timeToAcknowledgeReceipt attribute set to a duration greater than zero.

5.4.1.2 Well-formedness Rules

The following well-formedness rules apply to the BSID metamodel package.

5.4.2 Model Semantics

The semantics of each element of the BSID metamodel is defined in this section.

Figure 51 illustrates the interrelationships between the BSID modeling elements.

[image: image9.wmf]Business Service Interaction

Metamodel (Collaboration Elements)

ServiceCollaboration

baseElement = Collaboration

<<

stereotype>>

NetworkComponent

baseElement = Class

isSecureTransportRequired : Boolean

<<

stereotype>>

BusinessSignalMessage

baseElement = Class

BusinessActionMessage

<<

stereotype>>

ServiceTransaction

baseElement = Class

isNonRepudiationRequired : Boolean

isAuthenticationRequired : Boolean

timeToPerform :

TimeExpression

timeToAcknowledgeReceipt :

TimeExpression

timeToAcknowledgeAcceptance :

TimeExpression

<<

stereotype>>

MessageEnvelope

baseElement = Class

<<

stereotype>>

BusinessMessage

<<>

baseElement = Class

RequestingBusinessTransaction

recurrence :

NaturalNumber

isNonRepudiationOfReceiptRequired : Boolean

<<

stereotype>>

RespondingBusinessTransaction

isIntelligibleCheckRequired : Boolean

<<

stereotype>>

EnterpriseComponent

perform(a :

RequestingBusinessTransaction)

perform(a :

RequestingBusinessTransaction) :

RequestingBusinessTransaction

return(a :

RespondingBusinessTransaction)

isValid(a :

BusinessTransaction) : Boolean

isAcceptable(a :

BusinessTransaction) : Boolean

BusinessService

callTransaction(a :

RequestingBusinessTransaction)

request(a :

RequestingBusinessTransaction)

signal(a :

BusinessSignal)

response(a :

RespondingBusinessTransaction)

return(a :

RespondingBusinessTransaction)

checkProcessControls()

checkSecurityControls()

<<

stereotype>>

Agent

return(a :

BusinessTransaction)

transfer(a :

BusinessTransaction)

<<

stereotype>>

1

+

forService

1

Figure 51. BSID Model Semantics

5.4.2.1 Agent

An agent acts on behalf of a service. An agent can be a user agent such as a web browser but may also be an agent acting on behalf of another service. An agent is a Business Service that shall implement protocols up to the agent layer of the e-business network application, communications model. An agent has no network identity as a business service component. A user agent acts as an intermediary between a business service and an employee.

5.4.2.2 BusinessService

A business service that responds to business transaction requests initiated by other services. A business service implements protocols in all of the layers of the e-business network application, communication model. Business services monitor the execution of service collaborations. A service component has network identity as a business service.

5.4.2.3 ServiceTransaction

A ServiceTransaction is a mutually binding interaction between an initiating service and a responding service. There may be zero or more business signals exchanged during the interaction that can be used for security, auditing and process control. A set of business transactions as defined by a BusinessTransaction (from BTD) is a unit of work. Both services in the BusinessTransaction (CT) shall agree to the CT’s conclusion or both sides shall roll back to a state before the intial RequestingServiceTransaction was initiated.

A timed ServiceTransaction is a synchronous transaction that shall complete within the specified time. An asynchronous transaction is a one-way exchange of a business action.

5.4.2.4 BusinessServiceComponent

A Business Service is a logical computing component in a distributed business service environment. Business service transport security is specified and enabled by the business service component.

5.4.2.5 BusinessMessage

A BusinessMessage is an information document that is exchange between business processes. The message header provides for security, signature and dictionary reference information.

5.4.2.6 MessageEnvelope

A MessageEnvelope is used to define routing information and privacy properties for one or more BusinessActionMessage that is contained within the message envelope. The MessageEnvelope is the highest level of containment for information that is exchange between two business processes.

5.4.2.7 BusinessActionMessage

A BusinessActionMessage is a specialized StructuredMessage used to convey BusinessDocuments (from BUSINESS TRANSACTION DESIGN) between two business processes via a Business Service.

5.4.2.8 BusinessSignalMessage

A BusinessSignalMessage is a specialized StructuredMessage used to convey control and exception conditions between two business processes as it relates to a particular BusinessActionMessage request. A BusinessSignalMessage is transmitted asynchronously back to an business process that initiated the transfer of business process execution control.

5.4.2.9 RequestingServiceTransaction

A RequestingServiceTransaction is the initial business transaction within a BusinessTransaction. When a BusinessTransaction fails, the rollback is to the state of the system and business process as it was just before the initiation of the transaction. If the recurrence property is set to a positive value the request is tried again until the count is decremented to zero. Retrys only occur on the receipt of a control exception which may be an indicator that the failure could have been technical in nature. If the exception was a process exception then the recurrence counter is not applicable, since the exception was generated due to the failure of a business rule and shall be redress by higher level processes.

If a isNonRepudiationOfReceiptRequired is true, this indicates that both partners agree to mutually verify receipt of a requesting business document and that the receipt shall be non-reputable. A receiving partner shall send notification of failed business control (possibly revoking a contractual offer) if a responding partner has not properly delivered their business document.

Non-repudiation of receipt provides the following audit controls.
Verify responding role identity (authenticate)
 – Verify the identity of the responding role (individual or organization) that received the requesting business document.
Verify content integrity – Verify the integrity of the original content of the business document request.

5.4.2.10 RespondingServiceTransaction

A RespondingServiceTransaction is the responding business transaction within a BusinessTransaction to a particular RequestingServiceTransaction. Typically all BusinessTransaction are defined in RequestingServiceTransaction/ RespondingServiceTransaction pairs. If the isIntelligibleCheckRequired property is true then both partners agree that a responding partner role shall check that a requesting document is not garbled (unreadable, unintelligible) before verification of properly receipt is returned to the requesting partner. Verification of receipt shall be returned when a document is “accessible” but it is preferable to also check for garbled transmissions at the same time in a point-to-point synchronous business network where partners interact without going through an asynchronous service provider.

5.4.2.11 Service Collaboration

A ServiceCollaboration specifies the interactions between Business Services. It specifies the conditions and/or constraints by which interactions are executed.

Message Model Semantics

Figure 52 specifies the semantics for the definition of business messages.

[image: image10.wmf]BusinessActionMessage

<<stereotype>>

BusinessSignalMessage

baseElement = Class

UnstructuredMessage

body : String

forAction

StructuredMessage

BusinessMessage

<<>baseElement = Class

MessageEnvelope

baseElement = Class

<<stereotype>>

0..n

+body

0..n

ElementId

baseElement = ModelElement

0..1

+prototype

0..1

0..1

+prototype

0..1

Entity

baseClass = "Class"

isSecureEntity : Boolean

isSignatureEntity : Boolean

abreviation : String

dictionaryReference : String

<<stereotype>>

1..n

+body

1..n

1..n

+header

1..n

1..n

+header

1..n

0..1

+prototype

0..1

Figure 52. BSV Message Model Semantics

5.4.2.12 BusinessActionMessage

The BusinessActionMessage specifies the business activity that processes a business request and the header and body of the message. The BusinessActionMessage maps to the business document that was defined in the BTD and defines process routing and security constraints

5.4.2.13 ElementId

The ElementId identifies the dictionary prototype template which defines the MessageEvelope, BusinessMessage and the Entities used in the construction of the message.

5.4.2.14 InformationEntity

An Entity is the basic element for specifying information elements. Along with the name and type, it specifies privacy and security for the information.

5.4.2.15 MessageEnvelope

A MessageEnvelope is the highest level container for transporting business documents between business processes via Business Services.

5.4.2.16 BusinessActionMessage

A BusinessActionMessage is a specialization of a StructuredMessage used to invoke a business process in the receiving system.

5.4.2.17 BusinessSignalMessage

A BusinessSignalMessage is a specialization of a StructuredMessage used to convey control and process exceptions occurring in a business process in the receiving system to a business process in the initiating system.

5.4.2.18 UnstructuredMessage

A UnstructuredMessage is a specialization of a BusinessMessage used to transport arbitrary bit streams such as would be the case for images, video and audio.

5.4.2.19 StructuredMessage

A StructuredMessage is a specialization of a BusinessMessage used to transport structured information.

5.4.3 Model Management Abstract Syntax & Semantics

The following stereotypes and tagged values are contained in the Business Service View management metamodel. Figure 53 illustrates the interrelationships between the BSV model management and model elements.

[image: image11.wmf]Business Service Component Interaction Model Management

BusinessService

Component

<<

stereotype>>

ServiceCollaboration

<<

stereotype>>

components

1

..n

ServiceTransaction

<<

stereotype>>

interactions

1

..n

BusinessActionMessage

<<

stereotype>>

1

+

respondingAction

1

0

..1

+

requestingAction

0

..1

BusinessServiceComponentInteraction

View

baseElement = Model

<<

stereotype>>

1

..n

+

executionProcessParticipants

1

..n

1

..n

+

theTransactionDialogs

1

..n

1

..n

1

..n

executionProcessInteraction

1

..n

1

..n

business Actions

Figure 53. Model Management Illustration

5.5 Business Service Interaction Diagram Pattern

Networked business services and business agents are configured to execute business transactions and business collaboration agreements. The UML sequence diagram notation is used to specify Business Service interactions. The following Business Service interactions are possible.

1. Service-Service.

2. Agent-Service-Service.

3. Service-Service-Agent.

4. Service-Agent-Service.

5. Agent-Service-Agent

5.5.1 Service-Service

Business Transaction Activity
Figure 54 illustrates time to perform equals time to acknowledge acceptance and no responding business document.

[image: image12.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

Figure 54. Service-Service Interaction Pattern A

Figure 55 illustrates time to perform equals time to acknowledge acceptance and a responding business document.

[image: image13.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2. response(BusinessActionMessage)

2.1. signal(ReceiptAcknowledgement)

Figure 55. Service-Service Interaction Pattern B

Figure 56 illustrates time to perform is greater than time to acknowledge acceptance.

[image: image14.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2. response(BusinessActionMessage)

1.2. signal(AcceptanceAcknowledgement)

2.1. signal(ReceiptAcknowledgement)

Figure 56. Service-Service Interaction Pattern C

Figure 57 illustrates Query/Response Activity, Request/Response Activity and Request/Confirm Activity.

[image: image15.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessActionMessage)

2. response(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2.1. signal(ReceiptAcknowledgement)

Figure 57. Service-Service Interaction Pattern D

Figure 58 illustrates Information Distribution Activity and Notification Activity

[image: image16.wmf] :

OriginatingService

 :

RespondingService

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

Figure 58. Service-Service Interaction Pattern E

5.5.2 Agent-Service-Service

Business Transaction Activity
Figure 59 illustrates time to perform equals time to acknowledge acceptance and no responding business document.

[image: image17.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.2. return(BusinessSignal)

Figure 59. Agent-Service-Service Interaction Pattern A

Figure 60 illustrates time to perform equals time to acknowledge acceptance and a responding business document.

[image: image18.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. response(BusinessActionMessage)

1.2. return(BusinessActionMessage)

1.1.2.1. signal(ReceiptAcknowledgement)

Figure 60. Agent-Service-Service Interaction Pattern B

Figure 61 illustrates time to perform is greater than time to acknowledge acceptance.

[image: image19.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.1.3. response(BusinessActionMessage)

1.2. return(BusinessActionMessage)

1.1.3.1. signal(ReceiptAcknowledgement)

Figure 61. Agent-Service-Service Interaction Pattern C

Figure 62 illustrates Query/Response Activity, Request/Response Activity and Request/Confirm Activity

[image: image20.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.2. response(BusinessActionMessage)

1.2. return(BusinessActionMessage)

1.1.2.1. signal(ReceiptAcknowledgement)

1.1.1. signal(ReceiptAcknowledgement)

Figure 62. Agent-Service-Service Interaction Pattern D

Figure 63 illustrates Information Distribution Activity and Notification Activity

[image: image21.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessActionMessage)

Figure 63. Agent-Service-Service Interaction Pattern E

5.5.3 Service-Service-Agent

Business Transaction Activity
Figure 64 illustrates time to perform equals time to acknowledge acceptance and no responding business document.

[image: image22.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. signal(AcceptanceAcknowledgement)

Figure 64. Service-Service-Agent Interaction Pattern A

Figure 65 illustrates time to perform equals time to acknowledge acceptance and a responding business document.

[image: image23.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. response(BusinessActionMessage)

1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 65. Service-Service-Agent Interaction Pattern B

Figure 66 illustrates time to perform is greater than time to acknowledge acceptance.

[image: image24.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2. signal(AcceptanceAcknowledgement)

1.3. response(BusinessActionMessage)

1.3.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 66. Service-Service-Agent Interaction Pattern C

Figure 67 illustrates Query/Response Activity, Request/Response Activity and Request/Confirm Activity

[image: image25.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessActionMessage)

1.2. response(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 67. Service-Service-Agent Interaction Pattern D

Figure 68 illustrates Information Distribution Activity and Notification Activity

[image: image26.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

1. request(BusinessActionMessage)

1.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 68. Service-Service-Agent Interaction Pattern E

5.5.4 Service-Agent-Service

Business Transaction Activity
Figure 69 illustrates time to perform equals time to acknowledge acceptance and no responding business document.

[image: image27.wmf] :

OriginatingService

 :

RespondingService

 :

RespondingAgent

 :

OriginatingAgent

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. signal(AcceptanceAcknowledgement)

2. queryTxn()

2.1. return(BusinessSignal)

Figure 69. Service-Agent-Service Interaction Pattern A

Figure 70 illustrates time to perform equals time to acknowledge acceptance and a responding business document.

[image: image28.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessActionMessage)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 70. Service-Agent-Service Interaction Pattern B

Figure 71 illustrates time to perform is greater than time to acknowledge acceptance.

[image: image29.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. signal(AcceptanceAcknowledgement)

1.1.1.1.3. response(BusinessActionMessage)

1.1.1.1.3.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 71. Service-Agent-Service Interaction Pattern C

Figure 72 illustrates Query/Response and Request/Response Activity

[image: image30.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessActionMessage)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 72. Service-Agent-Service Interaction Pattern D

Figure 73 illustrates Request/Confirm Activity

[image: image31.wmf] :

OriginatingService

 :

OriginatingAgent

 :

RespondingAgent

 :

RespondingService

1. callTxn()

1.1. return(BusinessActionMessage)

1.1.1. transfer(BusinessActionMessage)

1.1.1.1. request(BusinessActionMessage)

1.1.1.1.1. signal(ReceiptAcknowledgement)

1.1.1.1.2. response(BusinessActionMessage)

1.1.1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

Figure 73. Service-Agent-Service interaction Pattern E

Figure 74 illustrates Information Distribution Activity and Notification Activity

[image: image32.wmf] :

OriginatingService

 :

OriginatingAgent

 :

RespondingAgent

 :

RespondingService

1. callTxn()

1.1. return(BusinessAction)

1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgement)

2. callTxn()

2.1. return(BusinessSignal)

Figure 74. Service-Agent-Service Interaction Pattern F

5.5.5 Agent-Service-Agent

Business Transaction Activity
Figure 75 illustrates time to perform equals time to acknowledge acceptance and no responding business document.

[image: image33.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. signal(AcceptanceAcknowledgement)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(AcceptanceAcknowledgement)

Figure 75. Agent-Service-Agent Interaction Pattern A

Figure 76 illustrates time to perform equals time to acknowledge acceptance and a responding business document.

[image: image34.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

1.1.2. response(BusinessActionMessage)

1.1.2.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

Figure 76. Agent-Service-Agent Interaction Pattern B

Figure 77 illustrates time to perform is greater than time to acknowledge acceptance.

[image: image35.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BusinessActionMessage)

1.1.2. signal(AcceptanceAcknowledgement)

1.1.3. response(BusinessActionMessage)

1.1.3.1. signal(ReceiptAcknowledgement)

Figure 77. Agent-Service-Agent Interaction Pattern C

Figure 78 illustrates Query/Response Activity, Request/Response Activity and Request/Confirm Activity

[image: image36.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

1.1.2. response(BusinessActionMessage)

1.1.2.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessActionMessage)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. response(BuBusinessActionMessage)

Figure 78. Agent Interaction Pattern D

Figure 79 illustrates Information Distribution Activity and Notification Activity

[image: image37.wmf] :

OriginatingService

 :

RespondingService

 :

OriginatingAgent

 :

RespondingAgent

1. callTxn()

1.1. request(BusinessActionMessage)

1.1.1. signal(ReceiptAcknowledgement)

2. queryTxn()

2.1. return(BusinessActionMessage)

2.1.1. signal(ReceiptAcknowledgement)

1.2. return(BusinessSignal)

Figure 79. Agent-Service-Agent Interaction Pattern E
5.6 Business Information Structure Design Metamodel

The e-business collaboration modeling metamodel provides a language and grammar for constructing business collaboration models. Business information structure design patterns are applications of the metamodel to common business object representations. Representations capture common structure and semantics applicable to specific business object domains.

This document describes the following design patterns.

1. Reference design pattern. The design pattern for referencing business information descriptions to describe aggregate business information containers.

2. Query/Response business document design pattern. The design pattern for both querying business information and for specifying the structure of the response.

3. Disjunction design pattern. The design pattern for representing business information entities that contain one or more of a disjunctive entity.

4. Reification design pattern. The design pattern for representing common business information entities.

5. UML/XML DTD translation design pattern. The design pattern for translating UML business document models into XML DTD document schema.

6. Business document design pattern. The design pattern for exchanging messages that can be interpreted as “legal writings” with respect to commercial law.

7. Request/Response business document design pattern. The design pattern for requesting complex query results and for specifying the structure of the response.

5.6.1 Business Information Model Abstract Syntax

5.6.1.1 Stereotypes and Tagged Values

Figure 80 specifies the modeling elements and their interrelationships that are used to express the structure of business objects and documents in the BSV of a Business Transaction and Business Collaboration Protocol model. Each element and interrelationship permitted in a FSV Information Model is defined in the metamodel specified in this section of the document. [image: image38.wmf]BaseUnit

ElementId

baseElement = ModelElement

DerivedUnit

Literal

baseElement = Class

<<stereotype>>

PhysicalDimension

baseElement = Class

<<stereotype>>

Rating

baseElement = Class

<<stereotype>>

Entity

baseClass = "Class"

isSecureEntity : Boolean

isSignatureEntity : Boolean

abreviation : String

dictionaryReference : String

<<stereotype>>

PhysicalQuantityLexicon

baseElement = Model

<<stereotype>>

UnitOfMeasure

baseElement = Class

<<stereotype>>

PhysicalQuantity

baseElement = Package

<<stereotype>>

QuantitativeDataEntity

<<stereotype>>

SystemOfUnits

baseElement = Package

<<stereotype>>

Expression

language : Name = "OCL"

body : String

<<stereotype>>

UnitPrefix

baseElement = Class

<<stereotype>>

Information Model Abstact Syntax

BusinessDataEntity

classification : Enumeration

0..n

0..n

FundamentalDataEntity

lexicalRepresentation : String

dataType : DataType

minimumLength : NaturalNumber

intension : Expression

0..n

0..n

Figure 80. BSV Abstract Syntax

InformationEntity

An InformationEntity is the basic element used for modeling hierarchical information structures.

Tagged Values:

isConfidential. The information entity is encrypted so that unauthorized parties cannot view the information.

isTamperProof. The information entity has an encrypted message digest that can be used to check if the message has been tampered with. This requires a digital signature (sender’s digital certificate and encrypted message digest) associated with the document entity.

isAuthenticated. There is a digital certificate associated with the document entity. This provides proof of the signer’s identity.

FundamentalDataEntity

An FundamentalDataEntity is an atomic element used for modeling hierarchical information structures.

Tagged Values:

lexicalRepresentative. Defines the lexical representation of the element.

dataType. Defines the data type.

minimumLength. Defines the minimal length that this element.

intention. A OCL expression used to define the intended use of this element.

ElementId

The ElementID is used to provide a unique identification for a particular information element.

Tagged Values:

Expression

An Expression provides for the defintion of context and business rules using OCL .

Tagged Values:

language. Defines the formal language used to define the expression.

body. Defines the business rules.

StructuredMessage

An InformationEntity is the basic element used for modeling hierarchical information structures.

Tagged Values:

language. Defines the formal language used to define the expression.

body. Defines the business rules.

5.6.2 Model Semantic

The semantics of each element of the Information Model metamodel is defined in this section.

[image: image39.wmf]Directory Model Semantics

Literal

baseElement = Class

<<stereotype>>

DomainLexicon

baseElement = Model

<<stereotype>>

0..n

0..n

InformationEntity

baseElement = Class

isConfidential : Boolean

isTamperProof : Boolean

isAuthenticated : Boolean

(from Business Transaction View Metamodel)

<<stereotype>>

Directory

baseElement = Model

<<stereotype>>

1..n

1..n

BusinessDocument

baseElement = Class

<<stereotype>>

1..n

1..n

Figure 81. Directory Model Semantics

[image: image40.wmf]PhysicalDimension

baseElement = Class

<<stereotype>>

UnitOfMeasure

baseElement = Class

<<stereotype>>

UnitPrefix

baseElement = Class

<<stereotype>>

QuantitativeDataEntity

<<stereotype>>

1

+dimension

1

0..n

+unitOfMeasure

0..n

0..n

+prefix

0..n

Rating

baseElement = Class

<<stereotype>>

0..n

0..n

NaturalNumber

(from Primitives)

<<primitive>>

Literal

baseElement = Class

<<stereotype>>

Entity

baseClass = "Class"

isSecureEntity : Boolean

isSignatureEntity : Boolean

abreviation : String

dictionaryReference : String

<<stereotype>>

Dictionary Model Semantics

FundamentalDataEntity

lexicalRepresentation : String

dataType : DataType

minimumLength : NaturalNumber

intension : Expression

0..1

+maximumLength

0..1

0..n

+domain

0..n

Dictionary

baseElement = Model

<<stereotype>>

0..n

0..n

0..n

0..n

BusinessDataEntity

classification : Enumeration

0..n

0..n

0..n

0..n

0..n

0..n

Figure 82. Dictionary Model Semantics

[image: image41.wmf]UnitPrefix

baseElement = Class

<<stereotype>>

SystemOfUnits

baseElement = Package

<<stereotype>>

1..n

1..n

PhysicalQuantityLexicon

baseElement = Model

<<stereotype>>

0..n

1

0..n

1

UnitOfMeasure

baseElement = Class

<<stereotype>>

1..n

1..n

PhysicalDimension

baseElement = Class

<<stereotype>>

PhysicalQuantity

baseElement = Package

<<stereotype>>

1..n

1

1..n

1

1..n

1..n

1..n

1..n

Figure 83. Physical Quantity Lexicon

[image: image42.wmf]BaseUnit

SupplementaryUnit

UnitOfMeasure

baseElement = Class

<<stereotype>>

Expression

language : Name = "OCL"

body : String

<<stereotype>>

DerivedUnit

0..1

+unitExpression

0..1

0..1

+baseUnitExpression

0..1

SubMultiple

(from Business Service View Metamodel)

Multiple

Expression

language : Name = "OCL"

body : String

<<stereotype>>

UnitPrefix

baseElement = Class

<<stereotype>>

+factor

0..1

0..1

Units of Measure Semantics

Figure 84. Units of Measure Semantics

5.7 Business Information Structure Design Patterns

5.7.1 The Reference Design Pattern

Business entity containers can reference themselves and other entities by explicitly modeling the reference association as an entity with association properties. As shown in Figure 85, the reference association (SubComponent) should minimally contain cardinality properties and a name that has a semantic definition specifying the relationship between the related entities. This design pattern is useful for reusing common sub-entity representations between multiple entity containers.

[image: image43.wmf]Component

<<DataEntity>>

Cardinality

<<FundamentalDataEntity>>

GlobalSemanticCode

<<FundamentalDataEntity>>

SubComponent

<<DataEntity>>

0..*

0..*

1

1

1

+atLeast

1

1

+atMost

1

1

1

Figure 85. A Reference Relationship between Entities

Figure 85 shows a Component entity containing zero or more SubComponent entities that contain a reference to the same Component entity. Entities cannot be self-referencing via a UML association directly i.e. the client and supplier of a UML association cannot be the same. The UML association between the SubComponent and Composite entities must be unidirectional.

Figure 86 illustrates the use of parenthesis in a message guideline document to specify a reference from one entity to another. The supplier of the UML association is enclosed in parenthesis.

[image: image44.wmf]Component

0..*

SubComponent

1

(Component)

1

atLeast

.Cardinality

1

atMost

.Cardinality

1

GlobalSemanticCode

Figure 86. Illustration Showing Referenced Entity in Parenthesis

The XML document schema for this design pattern is shown in Figure 87. The Component element either comprises SubComponent sub-elements or it comprises the Association sub-element. The Component element also has an implied ID attribute that is only necessary when it is the target of a reference attribute value.

[image: image45.wmf]<!ELEMENT Component ((

SubComponent

*) |

Association) >

<!ATTLIST Component

id ID #IMPLIED >

<!ELEMENT

SubComponent

(Component,

atMost

,

atLeast

,

GlobalSemanticCode

) >

<!ELEMENT

atMost

(Cardinality) >

<!ELEMENT

atLeast

(Cardinality) >

<!ELEMENT

GlobalSemanticCode

(PCDATA) >

<!ELEMENT Cardinality (PCDATA) >

<!ELEMENT Association EMPTY >

<!ATTLIST Association

reference IDREF #REQUIRED>

Figure 87. Document Schema for Reference Design Pattern

The SubComponent element contains a Component sub-element as its content along with the cardinality and semantic properties. The design does not permit a reference attribute to be specified for the SubComponent element, as the “type” of the reference is then lost. Specifying the Component as a sub-element of SubComponent and then allowing Association to be a sub-element of Component is one method of retaining the “type” of the association allowing better type-checking and a better method for specifying the meaning of the SubComponent entity.

Figure 88 illustrates the use of the design pattern for creating XML document instances that comply with the DTD fragment in Figure 87. You will notice that the DTD permits other valid document instance construction, for example, the Component element with id ‘PartA’ could contain the Association sub-element and the Component sub-element of SubComponent could have an ‘id’ association. Both of these document instance fragments would, however, have no meaning with respect to the entity model in Figure 85 and the guideline in Figure 86.

This design specification holds when there is no requirement of a DTD to completely validate a document instance as in the Business Collaboration Framework. Documents must be valid with respect to a guideline that may contain business rules that constrain the structure and content of a document in a specific business process context as shown in Figure 88.

[image: image46.wmf]<Component id=‘

partA’

>

<!

–

properties go here

--

>

</Component>

<Component>

<

SubComponent

>

<Component>

<Association reference=‘

partA’

/>

</Component>

<

atLeast

>

<Cardinality>1</Cardinality>

</

atLeast

>

<

atMost

>

<Cardinality>5</Cardinality>

</

atMost

>

<

GlobalSemanticCode

>Requires</

GlobalSemanticCode

>

</

SubComponent

>

<Component>

Figure 88. Valid Reference Design Pattern Document Instance

Applications must ensure that the graph described by the ID-IDREF pairs do not recurse infinitely. A reference attribute value should therefore not equal the id attribute value of a containing Component element.

5.7.2 Query/Response Business Document Design Pattern

The query/response design pattern is useful for both querying business information and for specifying the structure of the response to the query. There are a number of approaches to designing query/response business documents.

1. The query and response are modeled as individual documents with fixed, independent structure.

2. The query is modeled as a constraint on a fixed structure that is used to return the response.

3. The query can be modeled as a constrained ‘template’ that must be ‘completed’ by a responding business partner.

The first approach is typical of Electronic Data Interchange (EDI) query/response message specifications. The second approach is typical of Structured Query Language (SQL) message specifications and the third approach is typical of symbolic programming languages such as Lisp or Prolog that implement unification. The BCF provides a design pattern for the third approach to query/response messages, as it is the most flexible approach to query/response message design where the query and response messages permit unlimited canonical data structures. The first two do not require a design pattern, as they are no different from standard business document specifications and are thus do not need a pattern.

Figure 89 illustrates a query/response data entity model. A product information query comprises zero or more query constraints and one product description. A product information response comprises zero (no results in query) or more product descriptions that match the query. A query constraint is an Object Constraint Language (OCL) expression that constraints the results returned in the query.

Specifying a template for the query results and placing constraints on the template by either filling in some of the template content or by constraining the content of the template using query constraints produces a product information query. Filling in the template in accordance with the already specified content and the constraints produces a product information response.

[image: image47.wmf]FreeFormText

<<FundamentalDataEntity>>

ProductInformationResponse

<<BusinessDocument>>

GlobalProductIdentifier

<<FundamentalDataEntity>>

QueryConstraint

<<FundamentalDataEntity>>

ProductInformationQuery

<<BusinessDocument>>

0..*

MonetaryAmount

<<FundamentalDataEntity>>

GlobalCurrencyCode

<<FundamentalDataEntity>>

ProductDescription

<<DataEntity>>

0..1

+productName

0..*

0..1

1

FinancialAmount

<<DataEntity>>

1

1

1

1

0..1

0..*

1

0..*

0..1

0..1

0..1

Figure 89. Query/Response Data Entity Model

The XML document schema for this design pattern is shown in Figure 90. The product description structure is used for both the query and response business documents. The template for the query is created from the product description schema.

[image: image48.wmf]<!ELEMENT

ProductInformationQuery

(

QueryConstraint

*,

ProductDescription

) >

<!ELEMENT

ProductInformationResponse

(

ProductDescription

*) >

<!ELEMENT

QueryConstraint

(PCDATA) >

<!ELEMENT

ProductDescription

(

productName

?,

GlobalProductIdentifier

?,

FinancialAmount

?) >

<!ELEMENT

productName

(

FreeFormText

) >

<!ELEMENT

FreeFormText

(PCDATA) >

<!ELEMENT

GlobalProductIdentifier

(PCDATA) >

<!ELEMENT

FinancialAmount

(

MonetaryAmount

,

GlobalCurrencyCode

) >

<!ELEMENT

MonetaryAmount

(PCDATA) >

<!ELEMENT

GlobalCurrencyCode

(PCDATA) >

Figure 90. Query/Response Document Schema

An example product information query is shown in Figure 91. Information on a product with the name ‘aName’ is requested if the price of the product is less than 500 monetary units of any currency. The template requests the global product identifier, monetary amount and global currency code to be returned in the response.

[image: image49.wmf]<

ProductInformationQuery

>

<

QueryConstraint

>

ProductDescription

.

FinancialAmount

.

MonetaryAmount

%

lt

; 500

</

QueryConstraint

>

<

ProductDescription

>

<

ProductName

>

aName

</

ProductName

>

<

GlobalProductIdentifier

></

GlobalProductIdentifier

>

<

FinancialAmount

>

<

MonetaryAmount

></

MonetaryAmount

>

<

GlobalCurrencyCode

></

GlobalCurrencyCode

>

</

FinancialAmount

>

</

ProductDescription

>

</

ProductInformationQuery

>

Figure 91. An Example Product Information Query

An example product information query response is shown in Figure 92. The result of the query returns two product descriptions, their product identifiers and their cost.

[image: image50.wmf]<

ProductInformationResponse

>

<

ProductDescription

>

<

ProductName

>

aName

</

ProductName

>

<

GlobalProductIdentifier

>3456789093</

GlobalProductIdentifier

>

<

FinancialAmount

>

<

MonetaryAmount

>100</

MonetaryAmount

>

<

GlobalCurrencyCode

>USD</

GlobalCurrencyCode

>

</

FinancialAmount

>

</

ProductDescription

>

<

ProductDescription

>

<

ProductName

>

aName

</

ProductName

>

<

GlobalProductIdentifier

>123456890</

GlobalProductIdentifier

>

<

FinancialAmount

>

<

MonetaryAmount

>50</

MonetaryAmount

>

<

GlobalCurrencyCode

>SF</

GlobalCurrencyCode

>

</

FinancialAmount

>

</

ProductDescription

>

</

ProductInformationResponse

>

Figure 92. An Example Product Information Query Response

5.7.3 Disjunction Design Pattern

The disjunction design pattern is useful for representing business information entities that contain one or more of a number of disjunctive entities (the pattern is also useful to inherit common data properties). This pattern is not necessary for representations of zero or more of a number of disjunctive entities. Figure 93 illustrates a model that employs a disjunctive design pattern.

[image: image51.wmf]Quantity

<<DataEntity>>

Magnitude

<<FundamentalDataEntity>>

1

Quality

<<DataEntity>>

Value

<<FundamentalDataEntity>>

1

ComponentTechnicalSpecification

<<DataEntity>>

1

1

Specification

<<DataEntity>>

1..*

1..*

GlobalSpecificationNameCode

<<FundamentalDataEntity>>

1

1

Figure 93. Disjunctive Data Entity Model

A component technical specification contains one or more specifications that are either quantities or qualities. Other representations of this specification allow either zero or more or two or more specification properties; now of which are meet the requirements of one or more specifications. Note that the specification data entity in Figure 93 is abstract (italicized class name). This prevents the data entity from being used as an object.

Figure 94 illustrates how the representation is shown in a message guideline document. The Choice node in the hierarchy shows the cardinality of one or more and the choice (disjunctive) nodes do not show any cardinality. The inherited GlobalSpecificationNameCode is repeated for each concrete class in the data entity model.

[image: image52.wmf]ComponentTechnicalSpecification

1..*

Choice

Quantity

1 Magnitude

1

GlobalSpecificationNameCode

Quality

1 Value

1

GlobalSpecificationNameCode

Figure 94. Disjunction Illustrated in a Message Guideline

The XML document schema for this design pattern is shown in Figure 95.

[image: image53.wmf]<!ELEMENT

ComponentTechicalSpecification

(Quantity |

Quality)+ >

<!ELEMENT Quantity (Magnitude,

GlobalSpecificationNameCode

) >

<!ELEMENT Quality (Value,

GlobalSpecificationNameCode

) >

<!ELEMENT Magnitude (PCDATA) >

<!ELEMENT Value (PCDATA) >

<!ELEMENT

GlobalSpecificationNameCode

(PCDATA) >

Figure 95. Disjunction Design Pattern Document Schema

A compliant XML document can provide one ore more occurrences of the quantity or quality specification properties.

5.7.4 Reification Design Pattern

The reification design pattern is useful for representing common business information entities that share a common design pattern but are verbose in their representation. Figure 96 illustrates an entity model for representing a manufacturer name and a product name.

[image: image54.wmf]Product

<<DataEntity>>

ProductName

<<DataEntity>>

1

GlobalLanguageCode

<<FundamentalDataEntity>>

1

ManufacturerName

<<DataEntity>>

1

1

FreeFormText

<<FundamentalDataEntity>>

1

1

1

1

1

1

1

1

Figure 96. Illustration of a Free Form Text Entity

Each ‘name’ entity contains a free form text entity and a global language code. It is very verbose to specify these entities and relationships for each ‘name’ entity in a large entity model. Figure 97 illustrates how the ManufacturerName and the ProductName entities can be reified to property names if a design pattern always emits a global language code requirement for each free form text requirement.

[image: image55.wmf]Product

<<DataEntity>>

FreeFormText

<<FundamentalDataEntity>>

1

1

1

1

+manufacturerName

+productName

Figure 97. Illustration of Reified Data Entities

The XML document schema for this design pattern is shown in Figure 98.

[image: image56.wmf]<!ELEMENT Product (

manufacturerName

,

productName

) >

<!ELEMENT

manufacturerName

(

FreeFormText

) >

<!ELEMENT

productName

(

FreeFormText

) >

<!ELEMENT

FreeFormText

(PCDATA) >

<!ATTLIST

FreeFormText

xml

:

lang

CDATA #REQUIRED >

Figure 98. Reification Document Schema

The xml:lang attribute is added to each free form text element. Figure 98 illustrates the xml:lang attribute as CDATA and not as an enumerated option list as this could lead to very large files.

The BCF uses this design pattern to reify the language code for free form text and the physical unit of measure code for each quantitative data entity.

5.7.5 UML/XML Translation Design Pattern

 The UML/XML DTD design pattern is useful for translating UML business document models into XML DTD document schema. It can be confusing, however, when the cardinality of data entities in a message guideline do not concur with the cardinality of XML DTD elements in a document schema. The reason for this discrepancy is that all the elements in a DTD are globally scoped. XML technology does provide tag syntax for namespace declaration but this can become verbose with deep element nesting. The design pattern thus chosen for UML to XML DTD conversion renders a DTD inadequate for validating a message with respect to a message guideline. Applications are therefore required to validate messages with respect to a guideline and not only with respect to a DTD.

Figure 99 illustrates an example data entity model where a Document entity comprises a fromBusiness and toBusiness declaration and a Business comprises zero or one Address entity.

[image: image57.wmf]Address

<<DataEntity>>

Document

<<DataEntity>>

BusinessDescription

<<DataEntity>>

0..1

1

1

+toBusiness

+fromBusiness

1

1

0..1

Figure 99. Illustration of a Data Entity Model

The UML model in Figure 99 is a ‘network’ model in that nodes in the network are interrelated in a network of associations. A message guideline, however, is a canonical hierarchy where each node in unique even though it is prototyped on a node in the UML network model. The algorithm to covert the network to a canonical hierarchy produces a graph shown in Figure 100 where each node in the graph is dependant on a prototypical node in the network.

The graph is a guideline that is modified to accurately represent the business data requirements. For example, Figure 100 illustrates that the toBusiness declaration of a BusinessDescription is not required to contain an Address (it needs to contain at least one Fundamental Data Entity but for the purposes of this illustration it is not necessary to show this). The fromBusiness declaration of a BusinessDescription is, however, required to contain an Address.

[image: image58.wmf]BusinessDescription.2

Document.1

1

BusinessDescription.4

1

Address.3

1

1

1

1

+toBusiness

+fromBusiness

Document

<<DataEntity>>

prototype

BusinessDescription

<<DataEntity>>

BusinessDescription

<<DataEntity>>

Address

<<DataEntity>>

prototype

prototype

prototype

Figure 100. Illustration of a Canonical Hierarchy

The design of an algorithm that creates an XML DTD from the graph in Figure 16 needs to account for this conditional composition of the BusinessDescription node. It is possible to create an extremely large DTD where each node of the DTD is labeled with the name of the prototypical UML class and the unique identifier of the instance necessary to provide unique identity with respect to the nodes in a canonical hierarchy. The BCF design, however, does not take this route, as there is no requirement for complete message validation with respect to a DTD. Instead, a DTD as shown in Figure 101, is produced by the UML to XML DTD algorithm.

[image: image59.wmf]<!ELEMENT Document (

fromBusiness

,

toBusiness

) >

<!ELEMENT

fromBusiness

(

BusinessDescription

) >

<!ELEMENT

toBusiness

(

BusinessDescription

) >

<!ELEMENT

BusinessDescription

(Address?) >

<!ELEMENT Address … >

Figure 101. Document Schema Example

The BusinessDescription element in Figure 101 specifies the Address sub-element as optional that seems in disagreement with the specification in Figure 100. What is more, the DTD permits zero sub-elements for BusinessDescription when provided as a sub-element to toBusiness and it permits one sub-element for BusinessDescription when provided as a sub-element to fromBusiness, both of which will be in disagreement with the graph specification in Figure 100.

5.7.6 Business Document Design Pattern

The following information is required in all business documents.

· Each business document must contain information that identifies the role, partner and business that is sending the business document. Each business document must also contain information that identifies the role, partner and business description that the document is going to. This information is similar to the information contained in the letterhead of a business document. Only the business identifier needs to be in the document as the identifier is the electronic equivalent of an address. Figure 102 illustrates the role descriptions in a business document.

[image: image60.wmf]1

From Role. Partner Role Description

1

|

--

Global Partner Role Classification Code

1

|

--

Partner Description

1

|

|

--

Global Partner Classification Code

1

|

|

--

Business Description

1

|

|

|

--

Global Business Identifier

1

To Role. Partner Role Description

1

|

--

Global Partner Role Classification Code

1

|

--

Partner Description

1

|

|

--

Global Partner Classification Code

1

|

|

--

Business Description

1

|

|

|

--

Global Business Identifier

Figure 102. Role Specification in a Business Document

· The contact information of the initiating role must be included into the business document. The responding partner will be obligated to contact the initiating partner if there are errors in the received business document and a response (business signal or business document) cannot be delivered to the initiating partner, or there is no response specified. Figure 103 illustrates the contact information in a business document.

[image: image61.wmf]1

From Role. Partner Role Description

1

|

--

Contact Information

1

|

|

--

Email Address

1

|

|

--

Telephone Number. Communications Number

1

|

|

--

Contact Name. Free Form Text

Figure 103. Contact Information in a Business Document

· The partner type, role type and supply chain code must be included as most conditional composition constraints are predicated on this information. Figure 104 illustrates supply chain specification in a business document.

[image: image62.wmf]1

From Role. Partner Role Description

1

|

--

Global Partner Role Classification Code

1

|

--

Partner Description

1

|

|

--

Business Description

1

|

|

|

--

Global Supply Chain Code

1

To Role. Partner Role Description

1

|

--

Global Partner Role Classification Code

1

|

--

Partner Description

1

|

|

--

Global Partner Classification Code

1

|

|

--

Business Description

1

|

|

|

--

Global Supply Chain Code

Figure 104. Supply Chain Specification in a Supply Chain

· Each document has an identifier. Each responding document must include the identifier of a requesting document. This allows documents to be tracked and reconciled. Figure 105 illustrates the specification of a document identifier in a business document.

[image: image63.wmf]1

This Document Identifier. Proprietary Document Identifier

1

|

--

Administered By. Business Description

1

|

--

Document Identifier. Free Form Text

0..1 Requesting Document Identifier. Proprietary Document Iden

tifier

1

|

--

Administered By. Business Description

1

|

--

Document Identifier. Free Form Text

Figure 105. Document Identifier in a Business Document

· Each document must have a time and date stamp for auditing control. The date and time stamp is also used for legal purposes. Figure 106 illustrates the specification of a data and time stamp in a business document.

[image: image64.wmf]1

Document Generation Date Time. Date Time Stamp

1

|

--

Time Stamp

1

|

--

Date Stamp

Figure 106. Data and Time Stamp in a Business Document

5.7.7 Request/Response Business Document Design Pattern

The request/response design pattern is useful for requesting a business partner to perform a business action and to return a response that meets given constraints. This design pattern differs from the query/response design pattern in two respects:

1. Semantically, a query/response transaction specifies an initiator’s request for information that the responder has. A request/response transaction, however, asks the responder to perform an action and return a result of the action. This is an algorithmic response base on a prescriptive request.

2. Syntactically, a “Request” business document design pattern can comprise business rules that apply to the aggregation of the results in a response. Business applications responding to a request need to perform an additional processing step to apply these business rules to all the results of a query and not to each result of a query.

Figure 107 illustrates a request/response data entity model. A product availability request comprises zero or more query constraints, one or more business constraints and zero ore more product descriptions. The query constraints are constraints that must be met by each result returned in the response. The business constraints are the constraints that must be met by the entire response. Consider, for example, an initiator’s product availability request for a maximum of 100 products of a particular type. The request for 100 products is a business constraint as the sum of all the product availability results must not be greater than 100. The type of product is a query constraint as each result must be the availability for the particular product type. A responding business partner may have less than 100 products and the partner may have more than 100 products in each of a number of locations. They therefore are required to perform a business action that reasons about how they will respond to such a request for availability. This may require some planning or optimisation algorithm to provide the response.

A product availability response comprises zero or more product availability results that match both the query constraint and the business constraint. A query constraint is an Object Constraint Language (OCL) expression that constraints each result returned in the response. A business constraint is an Object Constraint Language (OCL) expression that constraints the response.

Specifying a template for the response results and placing constraints on the template by either filling in some of the template content or by constraining the content of the template using query constraints produces a product availability query. Filling in the template in accordance with the already specified content, the query constraints and the business constraints produces a product availability response.

[image: image65.wmf]GlobalProductIdentifier

<<FundamentalDataEntity>>

BusinessConstraint

<<FundamentalDataEntity>>

QueryConstraint

<<FundamentalDataEntity>>

ProductAvailabilityRequest

<<BusinessDocument>>

1..n

1..n

1

1

ProductAvailabilityResponse

<<BusinessDocument>>

Quantity

<<FundamentalDataEntity>>

ProductDescription

<<DataEntity>>

1

1

GlobalBusinessIdentifier

<<FundamentalDataEntity>>

ProductAvailability

<<DataEntity>>

1

1

0..n

0..n

1

1

0..1

0..1

0..1

0..1

+location

Figure 107. Request/Response Data Entity Model

The XML document schema for this design pattern is shown in Figure 108. The product availability structure is used for both the request and response business documents. The template for the request is created from the product availability schema.

[image: image66.wmf]<!ELEMENT

ProductAvailabilityRequest

(

BusinessConstraint

+,

QueryConstraint

*,

ProductAvailability

) >

<!ELEMENT

ProductAvailabilityResponse

(

ProductAvailability

*) >

<!ELEMENT

QueryConstraint

(PCDATA) >

<!Element

BusinessContraint

(PCDATA) >

<!Element

ProductAvailability

(

ProductDescription

,

Quantity?,

GlobalBusinessIdentifier

?) >

<!ELEMENT

ProductDescription

(

GlobalProductIdentifier

) >

<!ELEMENT

GlobalProductIdentifier

(PCDATA) >

<!ELEMENT Quantity (PCDATA) >

Figure 108. Request/Response Document Schema

An example product availability request is shown in Figure 109. Availability on a product with the global product identifier is requested. The template requests the global product identifier, availability and locations to be returned in the response.

[image: image67.wmf]<

ProductAvailabilityRequest

>

<

QueryConstraint

>

ProductAvailability

.

ProductDescription

.

GlobalProductIdentifier

= 123456789

</

QueryConstraint

>

<

BusinessConstraint

>

(this

-

>collect(

ProductAvailability

.Quantity))

-

>sum <= 100

</

BusinessConstraint

>

<

ProductAvailability

>

<

ProductDescription

>

<

GlobalProductIdentifier

></

GlobalProductIdentifier

>

</

ProductDescription

>

<Quantity></Quantity>

<Location></Location>

</

ProductAvailability

>

</

ProductAvailabilityRequest

>

Figure 109. An Example Product Availability Request

An example product availability request response is shown in Figure 110. The result of the request returns two product availability results, their product identifiers and the location at which they are available. Note that the total number of available products is 100 and that the number of available products at each location is less than 100. [A query/response design pattern cannot express this requirement].

[image: image68.wmf]<

ProductAvailabilityResponse

>

<

ProductAvailability

>

<

ProductDescription

>

<

GlobalProductIdentifier

>123456789</

GlobalProductIdentifier

>

</

ProductDescription

>

<Quantity>40</Quantity>

<location>

<

GlobalBusinessIdentifier

>987654321</

GlobalBusinessIdentifier

>

</location>

</

ProductAvailability

>

<

ProductAvailability

>

<

ProductDescription

>

<

GlobalProductIdentifier

>123456789</

GlobalProductIdentifier

>

</

ProductDescription

>

<Quantity>60</Quantity>

<location>

<

GlobalBusinessIdentifier

>654987321</

GlobalBusinessIdentifier

>

</location>

</

ProductAvailability

>

</

ProductAvailabilityResponse

>

Figure 110. An Example Product Availability Response

� The BCF specifies digital signatures for partner-to-partner non-repudiation of origin and content.

� The BCF specifies digital signature for partner-to-partner non-repudiation of origin and content.

� The BSID specifies digital signatures for partner-to-partner non-repudiation of origin and content.

� The BSID specifies digital signature for partner-to-partner non-repudiation of origin and content.

_1034269895.doc
[image: image1.emf][image: image2.emf]

BusinessSignalMessage

baseElement = Class

Acknowledgement

BusinessException

AcceptanceAcknowledgement

ReceiptAcknowledgement

ControlException

Business Signals

Exception

_1034306597.doc
[image: image1.emf][image: image2.emf]

Business Service Component Interaction Model Management

BusinessService Component

<<stereotype>>

ServiceCollaboration

<<stereotype>>

components

1..n

ServiceTransaction

<<stereotype>>

interactions

1..n

BusinessActionMessage

<<stereotype>>

1

+respondingAction

1

0..1

+requestingAction

0..1

BusinessServiceComponentInteraction View

baseElement = Model

<<stereotype>>

1..n

+executionProcessParticipants

1..n

1..n

+theTransactionDialogs

1..n

1..n

1..n

executionProcessInteraction

1..n

1..n

business Actions

_1035451243.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf][image: image10.emf]

Business Service View Metamodel (Collaboration Elements)

ServiceCollaboration

baseElement = Collaboration

<<stereotype>>

NetworkComponent

baseElement = Class

isSecureTransportRequired : Boolean

<<stereotype>>

BusinessSignalMessage

baseElement = Class

BusinessActionMessage

<<stereotype>>

ServiceTransaction

baseElement = Class

isNonRepudiationRequired : Boolean

isAuthenticationRequired : Boolean

timeToPerform : TimeExpression

timeToAcknowledgeReceipt : TimeExpression

timeToAcknowledgeAcceptance : TimeExpression

<<stereotype>>

MessageEnvelope

baseElement = Class

<<stereotype>>

BusinessMessage

<<>baseElement = Class

RequestingServiceTransaction

recurrence : NaturalNumber

isNonRepudiationOfReceiptRequired : Boolean

<<stereotype>>

RespondingServiceTransaction

isIntelligibleCheckRequired : Boolean

<<stereotype>>

BusinessService

callTransaction(a : RequestingServiceTransaction)

request(a : BusinessAction)

signal(a : BusinessSignal)

response(a : BusinessAction)

return(a : BusinessAction)

checkProcessControls()

checkSecurityControls()

<<stereotype>>

Agent

return(a : BusinessAction)

transfer(a : BusinessAction)

<<stereotype>>

1

+forService

1

StructuredMessage

(from Information Model)

_1034270448.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf][image: image10.emf][image: image11.emf][image: image12.emf]

Business Service Interaction Metamodel (Collaboration Elements)

ServiceCollaboration

baseElement = Collaboration

<<stereotype>>

NetworkComponent

baseElement = Class

isSecureTransportRequired : Boolean

<<stereotype>>

BusinessSignalMessage

baseElement = Class

BusinessActionMessage

<<stereotype>>

ServiceTransaction

baseElement = Class

isNonRepudiationRequired : Boolean

isAuthenticationRequired : Boolean

timeToPerform : TimeExpression

timeToAcknowledgeReceipt : TimeExpression

timeToAcknowledgeAcceptance : TimeExpression

<<stereotype>>

MessageEnvelope

baseElement = Class

<<stereotype>>

BusinessMessage

<<>baseElement = Class

RequestingBusinessTransaction

recurrence : NaturalNumber

isNonRepudiationOfReceiptRequired : Boolean

<<stereotype>>

RespondingBusinessTransaction

isIntelligibleCheckRequired : Boolean

<<stereotype>>

EnterpriseComponent

perform(a : RequestingBusinessTransaction)

perform(a : RequestingBusinessTransaction) : RequestingBusinessTransaction

return(a : RespondingBusinessTransaction)

isValid(a : BusinessTransaction) : Boolean

isAcceptable(a : BusinessTransaction) : Boolean

BusinessService

callTransaction(a : RequestingBusinessTransaction)

request(a : RequestingBusinessTransaction)

signal(a : BusinessSignal)

response(a : RespondingBusinessTransaction)

return(a : RespondingBusinessTransaction)

checkProcessControls()

checkSecurityControls()

<<stereotype>>

Agent

return(a : BusinessTransaction)

transfer(a : BusinessTransaction)

<<stereotype>>

1

+forService

1

_1033391391.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf][image: image10.emf][image: image11.emf][image: image12.emf]

EnterpriseComponent

perform()

perform()

return()

isValid()

isAcceptable()

ServiceCollaboration

baseElement = Collaboration

<<stereotype>>

NetworkComponent

baseElement = Class

isSecureTransportRequired : Boolean

<<stereotype>>

Agent

return()

transfer()

<<stereotype>>

BusinessService

callTransaction()

request()

signal()

response()

return()

checkProcessControls()

checkSecurityControls()

<<stereotype>>

1

+forService

1

1..n

1..n

+actor

1..n

1..n

BusinessActionMessage

<<stereotype>>

BusinessSignalMessage

baseElement = Class

ServiceTransaction

baseElement = Class

isNonRepudiationRequired : Boolean

isAuthenticationRequired : Boolean

timeToPerform : TimeExpression

timeToAcknowledgeReceipt : TimeExpression

timeToAcknowledgeAcceptance : TimeExpression

<<stereotype>>

1..n

1

+transactions

1..n

1

0..1

+respondingAction

0..1

1

+requestingAction

1

0..1

+receiptAcknowledgement

0..1

0..1

+acceptanceAcknowledgement

0..1

0..n

+exceptions

0..n

RequestingState

(from Requester)

RequestingServiceTransaction

recurrence : NaturalNumber

isNonRepudiationOfReceiptRequired : Boolean

<<stereotype>>

1

1..n

1

1..n

RespondingState

(from Responder)

RespondingServiceTransaction

isIntelligibleCheckRequired : Boolean

<<stereotype>>

1

1..n

1

1..n

components

1..n

BSV Semantic Model

_1033392591.doc
[image: image1.emf][image: image2.emf]

Business Service View Model Management

NetworkComponent

<<stereotype>>

ServiceCollaboration

<<stereotype>>

components

1..n

BusinessTransaction

<<stereotype>>

interactions

1..n

BusinessServiceView

baseElement = Model

<<stereotype>>

1..n

+executionProcessParticipants

1..n

1..n

+theTransactionDialogs

1..n

1..n

1..n

executionProcessInteraction

BusinessActionMessage

<<stereotype>>

1

+respondingAction

1

0..1

+requestingAction

0..1

1..n

business Actions

1..n

