Annex 8 Describing addresses

Addresses are basic to most business systems. We need to record location information and how to contact our customers, suppliers, and employees. By recording this information, we are able to send letters, invoices, and purchase orders, and to contact them by phone, fax, or e-mail. One way to model this is shown in the figure below. Here we have an Address with the basic contact information, addressee's name, email address, and phone numbers. It also owns a group of address lines to give us a flexible way to record all the different kinds of addresses we may need.

Basic address diagram

[image: image1.png]Address

Address Lines

Using addresses in SanFrancisco

The SanFrancisco class that records this information is called Address. In SanFrancisco the same kind of address object is used both for the company's addresses and for the addresses of the company's business partners. Address contains the basic contact information, a collection of free form address lines and references to a country, and optionally a user-defined "area." (You can think of area as an application-defined equivalent to a region.) The following diagram shows the structure of a SanFrancisco address.

SanFrancisco address implementation model

[image: image2.png]0.1

Address

Addresse
Emal address
Fax
PostalCade
PostalCadeL ocation|
Locale

area

Address Lines|

Country

Working with address information

The following table shows the names and types of the various attributes of an address. Most are Strings. The exceptions are Country and Area which are references to persistent objects. SanFrancisco does not impose any required format on the Strings, although LocaleInformation should conform to the standard for Java locales ("en_US", for example).

	Address attributes table

	Attribute Name
	Type
	Can Update?
	Purpose

	Addressee
	String
	Y
	The person this location is associated with

	PostalCode
	String
	Y
	The Zip Code / PostalCode for this location

	PostalCode
Location
	String
	Y
	The city for this location

	PhoneNumber
	String
	Y
	The phone number for this location

	FaxNumber
	String
	Y
	The fax number for this location

	EMailAddress
	String
	Y
	The email address for the addressee

	Locale
Information
	String
	Y
	The locale code for this location

	Country
	Country
	Y
	A reference to the country for this location

	Area
	Area
	Y
	A reference to a user-defined area (sales, shipping, etc.)

At first glance you might think that the use of a single PhoneNumber is a limitation, but you will see that, in places where addresses are used, an open-ended collection is maintained. Therefore, you can have a separate address object for each phone number you need to maintain for a company or business partner. This could also be handled by using the generic address line support to add address lines that represent additional phone numbers.

Working with address lines

In addition to the String attributes, a SanFrancisco address has a collection of address lines. Each address line is a String. Each address line has a key, which is defined by the user or application. If all you want to do is store an image of an address label, you might key your address lines with sequential numbers; if you want more meaningful access to the address information, use keys like "street address", "city", "state", and so on.

Class Address

public void addAddressLineBy(String addressLine, String key)

public boolean containsAddressLine(String addressline)

public boolean containsAddressLineKey(String key)

public Iterator createAddressLineIterator()

public String getAddressLineAt(Iterator position)

public String getAddressLineBy(String key)

public String getAddressLineKey(String addressLine)

public String getAddressLineKeyAt(Iterator position)

public DMap getAddressLines()

The next example shows how to construct a display address from an Address object.

Example -- Display address
public void displayAddress() throws SFException {

// display a typically formatted U.S. address

Address theAddress = CompanyContext.getActiveCompany().getPrimaryAddress();

System.out.println(theAddress.getAddressee());

System.out.println(theAddress.getAddressLineBy("addr1"));

String addr2 = theAddress.getAddressLineBy("addr2");

if (addr2 != null) {

System.out.println (addr2);

}

System.out.println(theAddress.getAddressLineBy("city")

+ ", "

+ theAddress.getAddressLineBy("state")

+ " "

+ theAddress.getPostalCode());

}

Finding addresses

Unlike many persistent Entities in SanFrancisco, addresses are not maintained by controllers. Instead, addresses are explicitly associated with the business object whose address it is. A company object will own its addresses and a business partner will own its address(es) and each provides methods to access and maintain addresses.

For more information about configuring a new address, see Configuring an address. For more information about extending the address object to provide additional data or functionality, see Extending an address.

_1026064143.doc
[image: image1.png]Address

Address Lines

